L2 CONCENTRATION OF BLOW-UP SOLUTIONS FOR THE NONLINEAR SCHRODINGER-EQUATION WITH CRITICAL POWER NONLINEARITY

被引:143
作者
MERLE, F [1 ]
TSUTSUMI, Y [1 ]
机构
[1] HIROSHIMA UNIV,FAC INTEGRATED ARTS & SCI,NAKA KU,HIROSHIMA 730,JAPAN
关键词
D O I
10.1016/0022-0396(90)90075-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the solution of the nonlinear Schrödinger equation i ∂u ∂t = -Δu + f(u) and u(0, ·) = θ{symbol}(·), where u is defined on [0,T)×RN and f is a nonlinear complex-valued function. We consider the case of the critical power. That is, f(z) ≅ - |z| 4 N z as z → + ∞ in a sense which will be made precise. In addition, we suppose that u(t) blows up in the norm ∥·∥H at time T. We prove that u(t) has no limit in L2 as t → T. In the particular case where θ{symbol} has a spherical symmetry, we further show a phenomenon of L2 concentration at the origin. © 1990.
引用
收藏
页码:205 / 214
页数:10
相关论文
共 16 条
[1]  
CAZENAVE T, SOME REMARKS NONLINE
[2]  
CAZENAVE T, CAUCHY PROBLEM NONLI
[3]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[4]  
GINIBRE J, 1985, ANN I H POINCARE-AN, V4, P309
[5]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[6]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[7]  
LEMESURIER B, FOCUSING SINGULARITY
[9]  
NAWA H, IN PRESS FUNKCIAL EK
[10]  
Nirenberg L., 1955, COMMUN PUR APPL MATH, V8, P648