THE ROLE OF METALLOTHIONEIN INDUCTION AND ALTERED ZINC STATUS IN MATERNALLY MEDIATED DEVELOPMENTAL TOXICITY - COMPARISON OF THE EFFECTS OF URETHANE AND STYRENE IN RATS

被引:41
作者
DASTON, GP
OVERMANN, GJ
TAUBENECK, MW
LEHMANMCKEEMAN, LD
ROGERS, JM
KEEN, CL
机构
[1] UNIV CALIF DAVIS, DEPT NUTR, DAVIS, CA 95616 USA
[2] US EPA, HLTH EFFECTS RES LAB, DIV DEV TOXICOL, RES TRIANGLE PK, NC 27711 USA
关键词
D O I
10.1016/0041-008X(91)90046-H
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We hypothesize that maternal metallothionein (MT) induction by toxic dosages of chemicals may contribute to or cause developmental toxicity by a chain of events leading to a transient but developmentally adverse decrease in Zn availability to the embryo. This hypothesis was tested by evaluating hepatic MT induction, maternal and embryonic Zn status, and developmental toxicity after exposure to urethane, a developmental toxicant, or styrene, which is not a developmental toxicant. Pregnant Sprague-Dawley rats were given 0 or 1 g/kg urethane ip, or 0 or 300 mg/kg styrene in corn oil po, on Gestation Day 11 (sperm positive = Gestation Day 0). These were maternally toxic dosages. As both treatments decreased food consumption, separate pair-fed control groups were also evaluated for effects on MT and Zn status and development. In addition, Gestation Day 11 rat embryos were exposed to urethane in vitro in order to determine whether urethane has the potential to be directly embryotoxic. Urethane treatment induced hepatic MT 14-fold over control; styrene treatment induced MT 2.5-fold. The MT induction by styrene could be attributed to decreased food intake, as a similar level of induction was observed in a pair-fed untreated control group. However, the level of MT induction by urethane was much greater than that produced by decreased food intake alone. Hepatic Zn concentration, particularly in the cytosol, was increased in the presence of increased hepatic MT concentration. Plasma Zn concentration was significantly decreased (approximately 30%) by urethane treatment, but not by styrene or food restriction (pair-feeding). Distribution of 65Zn to the liver of urethane-treated dams was significantly greater (by 30%), while distribution to embryonic tissues was significantly lower (by at least 50%) than in pair-fed or ad lib.-fed controls. Styrene treatment had no effect on 65Zn distribution. Urethane was developmentally toxic, causing an 18% decrease in fetal weight and a significant delay in skeletal ossification, but was not toxic to rat embryos in vitro. Styrene was not developmentally toxic. The changes observed after urethane treatment, namely substantial hepatic MT induction and altered maternal and embryonic Zn status, along with the lack of direct embryotoxicity of urethane in vitro, support the hypothesis that these maternal effects contribute to developmental toxicity. The lack of similar changes in styrene-intoxicated dams provides one explanation for its low developmental toxicity at maternally toxic dosages. © 1991.
引用
收藏
页码:450 / 463
页数:14
相关论文
共 36 条
[1]   6-MERCAPTOPURINE-INDUCED ALTERATIONS IN MINERAL METABOLISM AND TERATOGENESIS IN THE RAT [J].
AMEMIYA, K ;
KEEN, CL ;
HURLEY, LS .
TERATOLOGY, 1986, 34 (03) :321-334
[2]   EFFECT OF 6-MERCAPTOPURINE ON ZN-65 DISTRIBUTION IN THE PREGNANT RAT [J].
AMEMIYA, K ;
HURLEY, LS ;
KEEN, CL .
TERATOLOGY, 1989, 39 (04) :387-393
[3]  
[Anonymous], 1989, ZINC HUMAN BIOL
[4]   CHRONIC TOXICITY AND 3-GENERATION REPRODUCTION STUDY OF STYRENE MONOMER IN THE DRINKING-WATER OF RATS [J].
BELILES, RP ;
BUTALA, JH ;
STACK, CR ;
MAKRIS, S .
FUNDAMENTAL AND APPLIED TOXICOLOGY, 1985, 5 (05) :855-868
[5]   SIMPLIFIED MICROASSAY OF DNA AND RNA USING ETHIDIUM-BROMIDE [J].
BOER, GJ .
ANALYTICAL BIOCHEMISTRY, 1975, 65 (1-2) :225-231
[6]   INDUCTION OF METALLOTHIONEIN IN RAT-LIVER BY ZINC INJECTION AND RESTRICTION OF FOOD-INTAKE [J].
BREMNER, I ;
DAVIES, NT .
BIOCHEMICAL JOURNAL, 1975, 149 (03) :733-738
[7]  
BRZEZNICKA EA, 1987, TOXICOL APPL PHARM, V87, P457
[8]   EFFECTS OF CHEMICALLY-INDUCED MATERNAL TOXICITY ON PRENATAL DEVELOPMENT IN THE RAT [J].
CHERNOFF, N ;
SETZER, RW ;
MILLER, DB ;
ROSEN, MB ;
ROGERS, JM .
TERATOLOGY, 1990, 42 (06) :651-658
[9]   INFLUENCE OF ASHING TECHNIQUES ON THE ANALYSIS OF TRACE-ELEMENTS IN ANIMAL TISSUE .1. WET ASHING [J].
CLEGG, MS ;
KEEN, CL ;
LONNERDAL, B ;
HURLEY, LS .
BIOLOGICAL TRACE ELEMENT RESEARCH, 1981, 3 (02) :107-115