THE CORRELATION SPECTRUM FOR HYPERBOLIC ANALYTIC-MAPS

被引:85
作者
RUGH, HH
机构
[1] Niels Bohr Inst., Copenhagen Univ.
关键词
D O I
10.1088/0951-7715/5/6/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a class of analytic hyperbolic maps and prove that the time correlation functions associated with analytic observables have a well-defined spectrum satisfying exponential bounds. From the stability of the fixed points of the iterated map, we construct a Fredholm determinant which is an entire function of a complex variable and we show that from its roots we can calculate the spectral values. This paper extends previously obtained results for purely expanding analytic maps and analytic observables as well as for C1+epsilon Axiom A diffeomorphisms and Holder continuous observables. It gives a new, improved, approach to the case of real analytic Axiom A systems and analytic observables.
引用
收藏
页码:1237 / 1263
页数:27
相关论文
共 39 条
[1]  
Arnold VI., 1978, MATH METHODS CLASSIC, DOI 10.1007/978-1-4757-1693-1
[2]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[3]   RECYCLING OF STRANGE SETS .2. APPLICATIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :361-386
[4]   Resonances for intermittent systems [J].
Baladi, V. ;
Eckmann, J-P ;
Ruelle, D. .
NONLINEARITY, 1989, 2 (01) :119-135
[5]  
BIRKHOFF G, 1955, AM MATH SOC C PUBL, V9
[6]  
Cartan H., 1961, THEORIE ELEMENTAIRE
[7]   MIXING RATES AND EXTERIOR FORMS IN CHAOTIC SYSTEMS [J].
CHRISTIANSEN, F ;
ISOLA, S ;
PALADIN, G ;
RUGH, HH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :L1301-L1308
[8]   DETERMINATION OF CORRELATION SPECTRA IN CHAOTIC SYSTEMS [J].
CHRISTIANSEN, F ;
PALADIN, G ;
RUGH, HH .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2087-2090
[9]  
CHRISTIANSEN F, 1990, J PHYS A, V23, P713
[10]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826