ON THE NUMERICAL ALGEBRAIC-APPROXIMATION OF GLOBAL ATTRACTORS

被引:25
作者
FOIAS, C
JOLLY, MS
机构
[1] Dept. of Math., Indiana Univ., Bloomington, IN
关键词
D O I
10.1088/0951-7715/8/3/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic approximation of global attractors introduced by Foias and Temam is developed into a numerically stable algorithm and implemented for the Lorenz system and Kuramoto-Sivashinsky equation. An error estimate is derived for the numerical computation of a sequence of improper integrals needed for the polynomials. The zero sets of the approximating polynomials are observed to approach the global attractor at rates which seem to vary with the recurrence of the solution orbits.
引用
收藏
页码:295 / 319
页数:25
相关论文
共 30 条
[1]  
CONSTANTIN P, 1985, PHYSICA D, V30, P284
[2]  
CONSTANTIN P, 1988, INTEGRAL MANIFOLDS I
[3]  
DEVULDER C, 1993, MATH COMPUT, V60, P495, DOI 10.1090/S0025-5718-1993-1160273-1
[4]  
Doedel E. J., 1981, CONGRESSUS NUMERANTI, V30, P265
[5]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339
[6]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353
[7]   ON SOME DISSIPATIVE FULLY DISCRETE NONLINEAR GALERKIN SCHEMES FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
FOIAS, C ;
JOLLY, MS ;
KEVREKIDIS, IG ;
TITI, ES .
PHYSICS LETTERS A, 1994, 186 (1-2) :87-96
[8]   THE ALGEBRAIC-APPROXIMATION OF ATTRACTORS - THE FINITE DIMENSIONAL CASE [J].
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 32 (02) :163-182
[9]  
FOIAS C, 1988, J MATH PURE APPL, V67, P197
[10]  
FOIAS C, 1995, IN PRESS SIAM J MATH