EXACT THEORY FOR THE QUANTUM EIGENSTATES OF A STRONGLY CHAOTIC SYSTEM

被引:45
作者
AURICH, R
STEINER, F
机构
[1] II. Institut für Theoretische Physik, Universität Hamburg, W-2000 Hamburg 50
来源
PHYSICA D | 1991年 / 48卷 / 2-3期
关键词
D O I
10.1016/0167-2789(91)90097-S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an exact theory for the quantum eigenstates of a strongly chaotic system, which consists of a point particle sliding freely on a two-dimensional compact surface of constant negative curvature. The main result is a general sum rule which relates an (almost) arbitrarily smoothed sum over the quantum wavefunctions to a sum over the lengths of the classical orbits. As an example, we apply this formula to the Gaussian smoothed sum over wavefunctions. The question of "scars" as imprints of individual closed orbits is discussed, and the connection with Bogomolny's semiclassical theory is explicitly worked out. The investigation of the amplitude distribution P(PSI) reveals that the higher excited wavefunctions PSI behave as Gaussian random waves.
引用
收藏
页码:445 / 470
页数:26
相关论文
共 24 条
[11]   ERGODICITY AND SEMICLASSICAL LIMITS [J].
HELFFER, B ;
MARTINEZ, A ;
ROBERT, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (02) :313-326
[12]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[13]   ZUR ANALYTISCHEN THEORIE HYPERBOLISCHER RAUMFORMEN UND BEWEGUNGSGRUPPEN [J].
HUBER, H .
MATHEMATISCHE ANNALEN, 1959, 138 (01) :1-26
[14]   WAVE CHAOS IN THE STADIUM - STATISTICAL PROPERTIES OF SHORT-WAVE SOLUTIONS OF THE HELMHOLTZ-EQUATION [J].
MCDONALD, SW ;
KAUFMAN, AN .
PHYSICAL REVIEW A, 1988, 37 (08) :3067-3086
[15]   SOME PROPERTIES OF THE EIGENFUNCTIONS OF THE LAPLACE-OPERATOR ON RIEMANNIAN MANIFOLDS [J].
MINAKSHISUNDARAM, S ;
PLEIJEL, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (03) :242-256
[16]   A GENERALIZATION OF EPSTEIN ZETA-FUNCTIONS [J].
MINAKSHISUNDARAM, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (04) :320-327
[17]  
SELBERG A, 1956, J INDIAN MATH SOCNS, V20, P47
[18]   CLASSICAL AND QUANTUM-MECHANICS OF A STRONGLY CHAOTIC BILLIARD SYSTEM [J].
SIEBER, M ;
STEINER, F .
PHYSICA D, 1990, 44 (1-2) :248-266
[19]  
VOROS A, 1976, ANN I H POINCARE A, V24, P31
[20]   IRREGULAR WAVE-FUNCTIONS OF A HYDROGEN-ATOM IN A UNIFORM MAGNETIC-FIELD [J].
WINTGEN, D ;
HONIG, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (14) :1467-1470