INTRACELLULAR-TRANSPORT OF PROINSULIN IN PANCREATIC BETA-CELLS - STRUCTURAL MATURATION PROBED BY DISULFIDE ACCESSIBILITY

被引:101
作者
HUANG, XF
ARVAN, P
机构
[1] BETH ISRAEL HOSP,DIV ENDOCRINOL,BOSTON,MA 02215
[2] HARVARD UNIV,SCH MED,PROGRAM BIOL & BIOMED SCI,BOSTON,MA 02215
[3] UNIV ALABAMA,DEPT MICROBIOL,BIRMINGHAM,AL 35209
关键词
D O I
10.1074/jbc.270.35.20417
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In pancreatic islets, formation of beta-secretory granule cores involves early proinsulin homohexamerization and subsequent insulin condensation. We examined proinsulin conformational maturation by monitoring accessibility of protein disulfide bonds. Proinsulin disulfides are intact immediately upon synthesis, but are greater than or equal to 90% sensitive to in vivo reduction with 2 mM dithiothreitol; wash out of dithiothreitol leads to reoxidation, proinsulin transport, and conversion to insulin. With t(1/2) similar to 10 min, newly synthesized proinsulin becomes resistant to disulfide reduction, correlating with endoplasmic reticulum (ER) export. However, inhibition of ER export with brefeldin A blocks acquisition of resistance to reduction, and once proinsulin arrives in the Golgi, it resists reduction despite brefeldin treatment, Moreover, in vivo, resistance of proinsulin disulfides is overcome after increasing [dithiothreitol] > 10-fold, or in vitro, in islets lysed in a zinc-free, but not a zinc-containing, medium. Employing 30 mM dithiothreitol in vivo, a further decrease in disulfide accessibility is observed following proinsulin conversion to insulin. Incubation of islets with chloroquine or zinc enhances and diminishes accessibility of insulin disulfides, respectively. We hypothesize that two major conformational changes culminating in granule core formation, proinsulin hexamerization and insulin condensation, are sensitive to zinc and occur upon ER exit and arrival in immature secre tory granules, respectively.
引用
收藏
页码:20417 / 20423
页数:7
相关论文
共 58 条