STABILITY OF HIGHER-ORDER TRIANGULAR HOOD-TAYLOR METHODS FOR THE STATIONARY STOKES EQUATIONS

被引:52
作者
BOFFI, D
机构
关键词
D O I
10.1142/S0218202594000133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the stability for the approximation of the stationary Stokes equations by means of piecewise continuous velocities of degree k + 1 and piecewise continuous pressures of degree k for k greater-than-or-equal-to 1. The necessary and sufficient condition required on the triangulation is that it contains at least three triangles. The theorem is compared with previous results.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 12 条
[1]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[2]   ERROR ESTIMATES FOR FINITE-ELEMENT METHOD SOLUTION OF THE STOKES PROBLEM IN THE PRIMITIVE VARIABLES [J].
BERCOVIER, M ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :211-224
[3]   STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS [J].
BREZZI, F ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :581-590
[4]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[5]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[6]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[7]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[8]  
FORTIN M, 1977, RAIRO-ANAL NUMER-NUM, V11, P341
[9]  
Girault V., 1986, FINITE ELEMENT METHO, V5
[10]  
HOOD P, 1973, COMPUT FLUIDS, V1, P73