SYNTHETIC-IMAGES BY SUBSPACE TRANSFORMS .I. PRINCIPAL COMPONENTS IMAGES AND RELATED FILTERS

被引:70
作者
SYCHRA, JJ [1 ]
BANDETTINI, PA [1 ]
BHATTACHARYA, N [1 ]
LIN, Q [1 ]
机构
[1] MED COLL WISCONSIN,MILWAUKEE,WI 53226
关键词
Information filtering - Nuclear medicine - Principal component analysis - Magnetic resonance imaging - Bandpass filters;
D O I
10.1118/1.597374
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The principal component (PC) approach offers compressions of an image sequence into fewer images and noise suppressing filters. Multiple MR images of the same tomographic slice obtained with different acquisition parameters (i.e., with different T-R,T-E, and flip angles), time sequences of images in nuclear medicine, and cardiac ultrasound image sequences are examples of such input image sets. In this paper noise relationships of original and linearly transformed image sequences in general, and specifically of original, PC, and PC-filtered images are discussed. As the spinoff, it introduces locally weighted PC transforms and filters, nonlinear PC's, and a single-image based filter for suppression of noise. Examples illustrate increased perceptibility of anatomical/functional structures in PC images and PC-filtered images, including extraction of physiological functional information by PC loading curves. Generally, the more correlated the original images are, the more effective is the PC approach.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 32 条
[11]   OPTIMAL PULSE SEQUENCE FOR IMAGING HEPATIC METASTASES [J].
HENKELMAN, RM ;
HARDY, P ;
POON, PY ;
BRONSKILL, MJ .
RADIOLOGY, 1986, 161 (03) :727-734
[12]  
KARNY M, 1993, KYBERNETIKA, V26, P1
[13]  
OJA E, 1983, SUBSPACE METHODS PAT
[14]  
ORTENDAHL DA, 1987, 10TH P INT C INF PRO
[15]  
ORTENDAHL DA, 1986, BOOK ABSTRACTS SOC M, V1, P225
[16]  
Pearson K., 1901, PHILOS MAG, V6, P559
[17]  
Perman W H, 1984, Magn Reson Imaging, V2, P23, DOI 10.1016/0730-725X(84)90121-8
[18]  
Pratt W. K., 1978, DIGITAL IMAGE PROCES
[19]  
REIDERER SJ, 1986, J COMPUT ASSIST TOMO, V10, P103
[20]  
SCHMIDLIN P, INFORMATION PROCESSI, P80