ON THE NUMBER OF VIEWS OF POLYHEDRAL TERRAINS

被引:13
作者
AGARWAL, PK
SHARIR, M
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1007/BF02574373
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the number of topologically different orthographic views of a polyhedral terrain with n edges is O(n5+epsilon), and that the number of topologically different perspective views of such a terrain is O(n8+epsilon), for any epsilon > 0. Both bounds are almost tight in the worst case. The proofs are simple consequences of the recent almost-tight bounds of [11] on the complexity of lower envelopes in higher dimensions.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 12 条
[1]  
Bowyer K. W., 1990, International Journal of Imaging Systems and Technology, V2, P315, DOI 10.1002/ima.1850020407
[2]  
CHAKRAVARTY I, 1982, P SOC PHOTO-OPT INST, V336, P37, DOI 10.1117/12.933609
[3]   VISIBILITY PROBLEMS FOR POLYHEDRAL TERRAINS [J].
COLE, R ;
SHARIR, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1989, 7 (01) :11-30
[4]  
Crawford C. G., 1985, Proceedings CVPR '85: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No. 85CH2145-1), P382
[5]  
DEBERG M, 1991, UNPUB SPARSE ARRANGE
[6]   EFFICIENTLY COMPUTING AND REPRESENTING ASPECT GRAPHS OF POLYHEDRAL OBJECTS [J].
GIGUS, Z ;
CANNY, J ;
SEIDEL, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (06) :542-551
[7]  
HALPERIN D, 1993, 9TH P ACM S COMP GEO, P11
[8]   SINGULARITIES OF VISUAL MAPPING [J].
KOENDERINK, JJ ;
VANDOORN, AJ .
BIOLOGICAL CYBERNETICS, 1976, 24 (01) :51-59
[9]   VISIBILITY, OCCLUSION, AND THE ASPECT GRAPH [J].
PLANTINGA, H ;
DYER, CR .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1990, 5 (02) :137-160
[10]  
PLANTINGA WH, 1986, 27TH P S F COMP SCI, P123