SOME RESULTS ON NONLINEAR OPTIMAL-CONTROL PROBLEMS AND HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS

被引:12
作者
CANNARSA, P [1 ]
DAPRATO, G [1 ]
机构
[1] SCUOLA NORMALE SUPER PISA,I-56126 PISA,ITALY
关键词
D O I
10.1016/0022-1236(90)90079-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The optimal control of a distributed parameter system is connected to the solution of the corresponding Hamilton-Jacobi equation. This is a first-order equation in infinite dimensions with discontinuous coefficients. We study the Hamilton-Jacobi equation of a system governed either by a "semilinear" or by a "monotone" dynamics, replacing the unbounded terms of this equation by their Yosida approximations. We prove convergence of the approximate solutions to the value function of the original problem, by using the uniqueness result for viscosity solutions. Examples and applications are included. © 1990.
引用
收藏
页码:27 / 47
页数:21
相关论文
共 20 条
[2]  
BARBU V, 1982, HAMILTON JACOBI EQUA
[3]  
Barbu V., 1984, OPTIMAL CONTROL VARI
[4]  
Benilan Ph., 1972, THESIS ORSAY
[5]  
BREZIS H, 1972, J MATH PURE APPL, V51, P1
[6]  
Brezis H, 1973, LECT NOTES MATH, V5
[7]  
CANNARSA P, IN PRESS REND ACAD N
[8]   NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES [J].
CRANDALL, MG ;
PAZY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (01) :57-&
[9]  
CRANDALL MG, 1987, CR ACAD SCI I-MATH, V305, P233
[10]   HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS, .3. [J].
CRANDALL, MG ;
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 68 (02) :214-247