SOME RESULTS ON NONLINEAR OPTIMAL-CONTROL PROBLEMS AND HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS

被引:12
作者
CANNARSA, P [1 ]
DAPRATO, G [1 ]
机构
[1] SCUOLA NORMALE SUPER PISA,I-56126 PISA,ITALY
关键词
D O I
10.1016/0022-1236(90)90079-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The optimal control of a distributed parameter system is connected to the solution of the corresponding Hamilton-Jacobi equation. This is a first-order equation in infinite dimensions with discontinuous coefficients. We study the Hamilton-Jacobi equation of a system governed either by a "semilinear" or by a "monotone" dynamics, replacing the unbounded terms of this equation by their Yosida approximations. We prove convergence of the approximate solutions to the value function of the original problem, by using the uniqueness result for viscosity solutions. Examples and applications are included. © 1990.
引用
收藏
页码:27 / 47
页数:21
相关论文
共 20 条
[11]  
CRANDALL MG, HAMILTON JACOBI EQUA, V4
[12]   LINEAR PARABOLIC EVOLUTION-EQUATIONS IN LP-SPACES [J].
DIBLASIO, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1984, 138 :55-104
[13]   DIFFERENTIAL-GAMES AND REPRESENTATION FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI-ISAACS EQUATIONS [J].
EVANS, LC ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :773-797
[15]  
Lions J.-L., 1964, I HAUTES ETUDES SCI, P5, DOI 10.1007/BF02684796
[16]   DIFFERENTIAL-GAMES, OPTIMAL-CONTROL AND DIRECTIONAL-DERIVATIVES OF VISCOSITY SOLUTIONS OF BELLMAN AND ISAACS EQUATIONS [J].
LIONS, PL ;
SOUGANIDIS, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (04) :566-583
[17]  
LIONS PL, 1982, GENERALIZED SOLUTION
[18]  
LIONS PL, 1988, IN PRESS P C STOCHAS
[19]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
[20]  
von Wahl W., 1985, EQUATIONS NAVIER STO