NUMERICALLY INDUCED PHASE-SHIFT IN THE KDV SOLITON

被引:9
作者
HERMAN, RL [1 ]
KNICKERBOCKER, CJ [1 ]
机构
[1] ST LAWRENCE UNIV, DEPT MATH, CANTON, NY 13617 USA
关键词
D O I
10.1006/jcph.1993.1006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When using a finite difference scheme to study the motion of a KdV solition, a shift in the position of the solition from the exact solution is detected. In this paper we retain the lowest order terms in the truncation error and treat them analytically as a perturbation of the KdV equation. It is found that perturbation theory can be used to determine the numerically induced shift. © 1993 Academic Press. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 14 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[3]   A DIRECT APPROACH TO STUDYING SOLITON PERTURBATIONS [J].
HERMAN, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (12) :2327-2362
[4]  
KARPMAN VI, 1978, ZH EKSP TEOR FIZ, V48, P252
[5]   PERTURBATION EXPANSION FOR ZAKHAROV-SHABAT INVERSE SCATTERING TRANSFORM [J].
KAUP, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (01) :121-133
[6]   SOLITONS AS PARTICLES, OSCILLATORS, AND IN SLOWLY CHANGING MEDIA - SINGULAR PERTURBATION-THEORY [J].
KAUP, DJ ;
NEWELL, AC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 361 (1707) :413-446
[7]  
KNICKERBOCKER CJ, 1984, THESIS CLARKSON U
[8]   THE KORTEWEG-DEVRIES EQUATION - A HISTORICAL ESSAY [J].
MILES, JW .
JOURNAL OF FLUID MECHANICS, 1981, 106 (MAY) :131-147
[9]  
Newell A. C., 1980, Solitons, P177, DOI 10.1007/978-3-642-81448-8_6