ANDERSON LOCALIZATION FOR THE ALMOST MATHIEU EQUATION .2. POINT SPECTRUM FOR LAMBDA-GREATER-THAN-2

被引:12
作者
JITOMIRSKAYA, SY
机构
[1] Department of Mathematics, University of California, Irvine, 92717, California
关键词
D O I
10.1007/BF02101843
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that for any lambda > 2 and a.e. omega, theta the pure point spectrum of the almost Mathieu operator (H(theta)Psi)(n) = Psi(n-1) + Psi(n+1) + lambda cos(2 pi(theta) + n omega))Psi(n) contains the essential closure ($) over cap sigma of the spectrum. Corresponding eigenfunctions decay exponentially. The singular continuous component, if it exists, is concentrated on a set of zero measure which is nowhere dense in ($) over cap sigma.
引用
收藏
页码:563 / 570
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1987, SCHRODINGER OPERATOR
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]   SINGULAR CONTINUOUS-SPECTRUM FOR A CLASS OF ALMOST PERIODIC JACOBI MATRICES [J].
AVRON, J ;
SIMON, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (01) :81-85
[4]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[5]  
Cornfeld Isaac P., 1982, ERGODIC THEORY, V245
[6]   SUBHARMONICITY OF THE LYAPONOV INDEX [J].
CRAIG, W ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) :551-560
[7]   ABSENCE OF LOCALIZATION IN THE ALMOST MATHIEU EQUATION [J].
DELYON, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (01) :L21-L23
[8]   THE POSITIVITY OF THE LYAPUNOV EXPONENT AND THE ABSENCE OF THE ABSOLUTELY CONTINUOUS-SPECTRUM FOR THE ALMOST-MATHIEU EQUATION [J].
FIGOTIN, AL ;
PASTUR, LA .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) :774-777
[9]   CONSTRUCTIVE PROOF OF LOCALIZATION IN THE ANDERSON TIGHT-BINDING MODEL [J].
FROHLICH, J ;
MARTINELLI, F ;
SCOPPOLA, E ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :21-46
[10]   LOCALIZATION FOR A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-OPERATORS [J].
FROHLICH, J ;
SPENCER, T ;
WITTWER, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :5-25