On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves

被引:116
作者
Jafri, MS
Keizer, J
机构
[1] UNIV CALIF DAVIS,INST THEORET DYNAM,DAVIS,CA 95616
[2] UNIV CALIF DAVIS,SECT NEUROBIOL PHYSIOL & BEHAV,DAVIS,CA 95616
关键词
D O I
10.1016/S0006-3495(95)80088-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have investigated the effects of Ca2+ diffusion, mobile and stationary Ca2+ buffers in the cytosol, and Ca2+ handling by the endoplasmic reticulum on inositol 1,4,5-trisphosphate-induced Ca2+ wave propagation. Rapid equilibration of free and bound Ca2+ is used to describe Ca2+ sequestration by buffers in both the cytosol and endoplasmic reticulum (ER) lumen. Cytosolic Ca2+ regulation is based on a kinetic model of the inositol 1,4,5-trisphosphate (IP3) receptor of De Young and Keizer that includes activation and inhibition of the IP3 receptor Ca2+ channel in the ER membrane and SERCA Ca2+ pumps in the ER. Diffusion of Ca2+ in the cytosol and the ER and the breakdown and diffusion of IP3 are also included in our calculations. Although Ca2+ diffusion is severely limited because of buffering, when conditions are chosen just below the threshold for Ca2+ oscillations, a pulse of IP3 or Ca2+ results in a solitary trigger wave that requires diffusion of Ca2+ for its propagation. In the oscillatory regime repetitive wave trains are observed, but for this type of wave neither the wave shape nor the speed is strongly dependent on the diffusion of Ca2+. Local phase differences lead to waves that are predominately kinematic in nature, so that the wave speed (c) is related to the wavelength (lambda) and the period of the oscillations (tau) approximately by the formula c = lambda/tau. The period is determined by features that control the oscillations, including [IP3] and pump activity, which are related to recent experiments. Both solitary waves and wave trains are accompanied by a Ca2+ depletion wave in the ER lumen, similar to that observed in cortical preparations from sea urchin eggs. We explore the effect of endogenous and exogenous Ca2+ buffers on wave speed and wave shape, which can be explained in terms of three distinct effects of buffering, and show that exogenous buffers or Ca2+ dyes can have considerable influence on the amplitude and width of the waves.
引用
收藏
页码:2139 / 2153
页数:15
相关论文
共 44 条
[1]   RANGE OF MESSENGER ACTION OF CALCIUM-ION AND INOSITOL 1,4,5-TRISPHOSPHATE [J].
ALLBRITTON, NL ;
MEYER, T ;
STRYER, L .
SCIENCE, 1992, 258 (5089) :1812-1815
[2]  
Ames WF, 1977, NUMERICAL METHODS PA, V2nd
[3]   A SINGLE-POOL MODEL FOR INTRACELLULAR CALCIUM OSCILLATIONS AND WAVES IN THE XENOPUS-LAEVIS OOCYTE [J].
ATRI, A ;
AMUNDSON, J ;
CLAPHAM, D ;
SNEYD, J .
BIOPHYSICAL JOURNAL, 1993, 65 (04) :1727-1739
[4]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325
[5]   BELL-SHAPED CALCIUM-RESPONSE CURVES OF INS(1,4,5)P3-GATED AND CALCIUM-GATED CHANNELS FROM ENDOPLASMIC-RETICULUM OF CEREBELLUM [J].
BEZPROZVANNY, I ;
WATRAS, J ;
EHRLICH, BE .
NATURE, 1991, 351 (6329) :751-754
[6]   INCREASED FREQUENCY OF CALCIUM WAVES IN XENOPUS-LAEVIS OOCYTES THAT EXPRESS A CALCIUM-ATPASE [J].
CAMACHO, P ;
LECHLEITER, JD .
SCIENCE, 1993, 260 (5105) :226-229
[7]   A SINGLE-POOL INOSITOL 1,4,5-TRISPHOSPHATE-RECEPTOR-BASED MODEL FOR AGONIST-STIMULATED OSCILLATIONS IN CA2+ CONCENTRATION [J].
DEYOUNG, GW ;
KEIZER, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) :9895-9899
[8]   PROPERTIES OF INTRACELLULAR CA2+ WAVES GENERATED BY A MODEL-BASED ON CA2+-INDUCED CA2+ RELEASE [J].
DUPONT, G ;
GOLDBETER, A .
BIOPHYSICAL JOURNAL, 1994, 67 (06) :2191-2204
[9]   OSCILLATIONS AND WAVES OF CYTOSOLIC CALCIUM - INSIGHTS FROM THEORETICAL-MODELS [J].
DUPONT, G ;
GOLDBETER, A .
BIOESSAYS, 1992, 14 (07) :485-493
[10]   CALCIUM AS A COAGONIST OF INOSITOL 1,4,5-TRISPHOSPHATE INDUCED CALCIUM RELEASE [J].
FINCH, EA ;
TURNER, TJ ;
GOLDIN, SM .
SCIENCE, 1991, 252 (5004) :443-446