LOCALIZED ELASTICAE FOR THE STRUT ON THE LINEAR FOUNDATION

被引:52
作者
HUNT, GW
WADEE, MK
SHIACOLAS, N
机构
[1] Department of Civil Engineering, Imperial College of Science, Technology, and Medicine, London
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 1993年 / 60卷 / 04期
关键词
D O I
10.1115/1.2900971
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Localized solutions, for the classical problem of the nonlinear strut (elastica) on the linear elastic foundation, are predicted from double-scale analysis, and confirmed from nonlinear volume-preserving Runge-Kutta runs. The dynamical phase-space analogy introduces a spatial Lagrangian function, valid over the initial post-buckling range, with kinetic and potential energy components. The indefinite quadratic form of the spatial kinetic energy admits unbounded solutions, corresponding to escape from a potential well. Numerical experimentation demonstrates that there is a fractal edge to the escape boundary, resulting in spatial chaos.
引用
收藏
页码:1033 / 1038
页数:6
相关论文
共 25 条
[1]  
Amick C.J., 1991, EUR J APPL MATH, V3, P97
[2]   GLOBAL UNIQUENESS OF HOMOCLINIC ORBITS FOR A CLASS OF 4TH ORDER EQUATIONS [J].
AMICK, CJ ;
TOLAND, JF .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (04) :591-597
[3]  
BOLOTIN VV, 1958, RASCHETY PROCHNOST
[4]  
CHAMPNEYS AR, 1993, IN PRESS BIFURCATION
[5]  
Drazin PG, 1989, SOLITONS INTRO
[6]  
ELNASCHIE MS, 1989, J PHYS SOC JPN, V58, P4310, DOI 10.1143/JPSJ.58.4310
[7]  
Euler L., 1744, METHODUS INVENIEDI L
[8]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[9]   FAT-FRACTAL SCALING EXPONENT OF AREA-PRESERVING MAPS [J].
HANSON, JD .
PHYSICAL REVIEW A, 1987, 35 (03) :1470-1473
[10]  
HETENYI M, 1946, BEAMS ELASTIC F