EXISTENCE OF MLES FOR DISCRETE LINEAR EXPONENTIAL MODELS

被引:7
作者
AICKIN, M
机构
关键词
AMS 1970 subject classifications: Primary 62F10; Secondary; 62J99; categorical data; contingency tables; Log-linear models; maximum likelihood;
D O I
10.1007/BF02480268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Necessary and sufficient conditions are given for the existence of an MLE for log-linear and regression models for contingency tables. A partial compactification of the parameter space is used to elucidate a more abstract compactification given by Lauritzen [14]. A modification of the Newton-Raphson approximation yields MLEs in the partial compactification. © 1979 Kluwer Academic Publishers.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 15 条
[1]  
ADBY PR, 1974, INTRO OPTIMIZATION M
[2]  
AICKIN M, 1978, 5 AR STAT U TECHN RE
[3]  
AICKIN MG, 1976, THESIS U WASHINGTON
[4]  
ANDERSON JA, 1973, DISCRIMINANT ANAL AP
[5]  
BARNDORFFNIELSO.O, 1970, 19 AARH U VAR PUBL S
[6]   CONSISTENCY AND ASYMPTOTIC NORMALITY OF MLES FOR EXPONENTIAL MODELS [J].
BERK, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :193-&
[7]  
Bishop YM, 1975, DISCRETE MULTIVARIAT, P229
[8]  
BOCK RD, 1969, ESSAYS MEMORY SN ROY
[9]  
Brown D. T., 1959, INFORM CONTROL, V4, P386, DOI DOI 10.1016/S0019-9958(59)80016-4
[10]   GENERALIZED ITERATIVE SCALING FOR LOG-LINEAR MODELS [J].
DARROCH, JN ;
RATCLIFF, D .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05) :1470-&