EXISTENCE OF MLES FOR DISCRETE LINEAR EXPONENTIAL MODELS

被引:7
作者
AICKIN, M
机构
关键词
AMS 1970 subject classifications: Primary 62F10; Secondary; 62J99; categorical data; contingency tables; Log-linear models; maximum likelihood;
D O I
10.1007/BF02480268
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Necessary and sufficient conditions are given for the existence of an MLE for log-linear and regression models for contingency tables. A partial compactification of the parameter space is used to elucidate a more abstract compactification given by Lauritzen [14]. A modification of the Newton-Raphson approximation yields MLEs in the partial compactification. © 1979 Kluwer Academic Publishers.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 15 条
[11]  
Dempster A. P., 1971, Journal of Multivariate Analysis, V1, P316, DOI 10.1016/0047-259X(71)90006-6
[12]  
FARKAS J, 1902, J REINE ANGEW MATH, V74, P1
[13]   LOG-LINEAR MODELS FOR FREQUENCY DATA - SUFFICIENT STATISTICS AND LIKELIHOOD EQUATIONS [J].
HABERMAN, SJ .
ANNALS OF STATISTICS, 1973, 1 (04) :617-632
[14]  
Lauritzen S. L., 1975, Scandinavian Journal of Statistics Theory and Applications, V2, P23
[15]  
RAO CR, 1973, LINEAR STATISTICAL I, P53