SYMPLECTIC MAPS FOR THE N-BODY PROBLEM - STABILITY ANALYSIS

被引:71
作者
WISDOM, J
HOLMAN, M
机构
[1] Dept. Earth, Atmosph., Planet. Sci., Massachusetts Inst. of Technology, Cambridge
关键词
D O I
10.1086/116378
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The stability of the symplectic mapping method for the n-body problem introduced recently by Wisdom & Holman [AJ, 102, 1528 (1991)] is analyzed in a novel application of the methods of nonlinear dynamics.
引用
收藏
页码:2022 / 2029
页数:8
相关论文
共 17 条
[1]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[2]   THE LONG-TERM EVOLUTION OF ORBITS IN THE SOLAR-SYSTEM - A MAPPING APPROACH [J].
DUNCAN, M ;
QUINN, T ;
TREMAINE, S .
ICARUS, 1989, 82 (02) :402-418
[3]   SHADOWING OF PHYSICAL TRAJECTORIES IN CHAOTIC DYNAMICS - CONTAINMENT AND REFINEMENT [J].
GREBOGI, C ;
HAMMEL, SM ;
YORKE, JA ;
SAUER, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1527-1530
[4]   A NUMERICAL EXPERIMENT ON THE CHAOTIC BEHAVIOR OF THE SOLAR-SYSTEM [J].
LASKAR, J .
NATURE, 1989, 338 (6212) :237-238
[5]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[6]  
Peirce B., 1849, ASTRON J, V1, P1, DOI DOI 10.1086/100002
[7]  
PERCIVAL IC, 1979, NONLINEAR DYNAMICS B
[8]  
Plummer H. C., 1960, INTRO TREATISE DYNAM
[9]   SYMMETRICAL MULTISTEP METHODS FOR THE NUMERICAL-INTEGRATION OF PLANETARY ORBITS [J].
QUINLAN, GD ;
TREMAINE, S .
ASTRONOMICAL JOURNAL, 1990, 100 (05) :1694-1700
[10]  
QUINLAN GD, 1992, PREPRINT