SUQ(1, 1) AND THE RELATIVISTIC OSCILLATOR

被引:51
作者
MIRKASIMOV, RM [1 ]
机构
[1] JOINT INST NUCL RES,THEORET PHYS LAB,DUBNA 141980,USSR
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 18期
关键词
D O I
10.1088/0305-4470/24/18/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the generalization of the quantum harmonic oscillator to the case of the relativistic configurational space is a q-oscillator. The corresponding group of dynamical symmetry is the quantum group SU(q)(1, 1). The deformation parameter being q = e-omega/omega-0 where hBAR-omega-0 = 4mc2 and omega is a frequency of the oscillator. The deformed creation and annihilation operators are finite difference ones. The corresponding deformation of the Heisenberg-Weyl group and new coherent states are also considered.
引用
收藏
页码:4283 / 4302
页数:20
相关论文
共 36 条
[31]   SOME REMARKS ON KOSZUL ALGEBRAS AND QUANTUM GROUPS [J].
MANIN, YI .
ANNALES DE L INSTITUT FOURIER, 1987, 37 (04) :191-205
[32]  
MIRKASIMOV RM, 1966, ZH EKSP TEOR FIZ, V22, P629
[33]  
Moshinsky M., 1969, HARMONIC OSCILLATOR
[34]   COMPOSITE SYSTEMS VIEWED AS RELATIVISTIC QUANTAL ROTATORS - VECTORIAL AND SPINORIAL MODELS [J].
MUKUNDA, N ;
VANDAM, H ;
BIEDENHARN, LC .
PHYSICAL REVIEW D, 1980, 22 (08) :1938-1951
[35]  
VOKOS S, 1989, LAPPTH25389 ANN VIEU
[36]   TANNAKA-KREIN DUALITY FOR COMPACT MATRIX PSEUDOGROUPS - TWISTED SU(N) GROUPS [J].
WORONOWICZ, SL .
INVENTIONES MATHEMATICAE, 1988, 93 (01) :35-76