PHYSICAL STATES OF FERMI SYSTEMS

被引:7
作者
MIRACLESOLE, S
ROBINSON, DW
机构
[1] C.N.R.S., Marseille
[2] Faculté des Sciences, Luminy, Marseille
关键词
D O I
10.1007/BF01645422
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A classification of all translationally invariant states over the algebra of anticommutation relations which satisfy criteria of finite mean density, finite mean kinetic energy, and finite mean entropy is given. It is demonstrated that these concepts can be discussed in terms of affine, semi-continuous, functionals which respect the barycentric decompositions of invariant states. Many other pertinent results, both local and global, are derived. © 1969 Springer-Verlag.
引用
收藏
页码:235 / +
页数:1
相关论文
共 12 条
[1]  
Chaiken J.M., 1968, COMMUN MATH PHY, V8, P164, DOI [10.1007/bf01645803, DOI 10.1007/BF01645803]
[2]   FINITE-PARTICLE REPRESENTATIONS AND STATES OF CANONICAL COMMUTATION RELATIONS [J].
CHAIKEN, JM .
ANNALS OF PHYSICS, 1967, 42 (01) :23-&
[3]  
Dell'Antonio GF., 1966, COMMUN MATH PHYS, V2, P223
[4]   TOTAL NUMBER OF PARTICLES AND FOCK REPRESENTATION [J].
DELLANTONIO, GF ;
DOPLICHE.S .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (03) :663-+
[5]  
Kastler D., 1966, COMMUN MATH PHYS, V3, P151, DOI DOI 10.1007/BF01645409
[6]   INTEGRAL REPRESENTATIONS OF INVARIANT STATES ON B] ALGEBRAS [J].
LANFORD, O ;
RUELLE, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (07) :1460-+
[7]   MEAN ENTROPY OF STATES IN QUANTUM-STATISTICAL MECHANICS [J].
LANFORD, OE ;
ROBINSON, DW .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (07) :1120-&
[8]  
POWERS RT, 1967, THESIS PRINCETON U
[9]  
Robinson D.W., 1966, COMMUN MATH PHYS, V3, P1, DOI [10.1007/bf01645459, DOI 10.1007/BF01645459]
[10]  
Ruelle D., 1966, COMMUN MATH PHYS, V3, P133, DOI [10.1007/bf01645450, DOI 10.1007/BF01645450]