THE EVOLUTION OF THE DIRAC FIELD IN CURVED SPACE-TIMES

被引:5
作者
DEVRIES, A
机构
[1] Fakultät für Mathematik, Ruhr-Universität, Bochum
关键词
D O I
10.1007/BF02567820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analogously to the recently published treatise on the massless spin-s wave fields for s = 1/2 and s = 1, cf. [32], the covariant Dirac equation in certain coordinate charts is rewritten as an evolution equation. As a result it is proved that the Dirac operator D in the whole outer space of a Kerr-Newman black hole is symmetric. This is different from the behavior of the Maxwell operator which admits superradiance in case of a rotating black hole, cf. [32]. An interpretation of this symmetry may be that there is no particle creation by black holes, cf. [24, 16, 10, 15]. Moreover, the operator A = -ih(-1) D in expanding Robertson-Walker universes is shown to be dissipative, whereas in the contracting case -A is dissipative.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 33 条
[21]  
Haag R., 1996, LOCAL QUANTUM PHYS F
[22]   EIGENVALUES OF THE DIRAC OPERATOR ON COMPACT KAHLER-MANIFOLDS [J].
HIJAZI, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (03) :563-579
[23]   SYMMETRY OPERATORS AND SEPARATION OF VARIABLES FOR SPIN-WAVE EQUATIONS IN OBLATE SPHEROIDAL COORDINATES [J].
KALNINS, EG ;
WILLIAMS, GC .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (07) :1739-1744
[24]   THE DIRAC-EQUATION IN ROBERTSON-WALKER SPACES - A CLASS OF SOLUTIONS [J].
KOVALYOV, M ;
LEGARE, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :191-198
[25]  
Kramer D., 1980, EXACT SOLUTIONS EINS
[26]  
LANDAU LD, 1975, CLASSICAL FIELDS
[27]   MASSIVE SPIN 1/2 WAVE AROUND A KERR-NEWMAN BLACK-HOLE [J].
LEE, CH .
PHYSICS LETTERS B, 1977, 68 (02) :152-156
[28]  
Lichnerowicz A., 1964, B SOC MATH FR, V92, P11
[29]   AN APPROACH TO GRAVITATIONAL RADIATION BY A METHOD OF SPIN COEFFICIENTS [J].
NEWMAN, E ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (03) :566-&
[30]  
Penrose R., 1984, CAMBRIDGE MONOGRAPHS, V1