WESS-ZUMINO-WITTEN CONFORMAL FIELD-THEORY FOR SIMPLY LACED GROUPS AT LEVEL ONE

被引:7
作者
CHARPENTIER, E
GAWEDZKI, K
机构
[1] U.F.R. de Mathématiques, couloir 45-55, 5ième étage, Université Paris VII, 2 place Jussieu
[2] C.N.R.S., I.H.E.S., 91440 Bures-sur-Yvette
关键词
D O I
10.1016/0003-4916(92)90047-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the propagation amplitudes of the Wess-Zumino-Witten conformal field theory on a general Riemann surface with boundary, for the simply laced groups and at level one. It is shown how the cocycles correcting the free field exponentials in the Frenkel-Kac and Segal vertex operator representation of the affine Kac-Moody symmetries of the model extend to the general amplitudes. © 1992.
引用
收藏
页码:233 / 294
页数:62
相关论文
共 58 条
[1]  
Alessandrini V., 1971, Physics Reports. Physics Letters Section C, V1c, P269, DOI 10.1016/0370-1573(71)90008-1
[2]   FERMIONIC STRINGS IN THE OPERATOR-FORMALISM [J].
ALVAREZGAUME, L ;
NELSON, P ;
GOMEZ, C ;
SIERRA, G ;
VAFA, C .
NUCLEAR PHYSICS B, 1988, 311 (02) :333-400
[3]  
AXELROD S, 1989, IASSNSHEP8957 PREPR
[4]   NEW DUAL QUARK MODELS [J].
BARDAKCI, K ;
HALPERN, MB .
PHYSICAL REVIEW D, 1971, 3 (10) :2493-&
[5]  
BEILINSON A, 1990, FLAT PROJECTIVE CONN
[6]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[7]   ALGEBRAIC-GEOMETRY AND THE GEOMETRY OF QUANTUM STRINGS [J].
BELAVIN, AA ;
KNIZHNIK, VG .
PHYSICS LETTERS B, 1986, 168 (03) :201-206
[8]   FOCK REPRESENTATIONS AND BRST COHOMOLOGY IN SL(2) CURRENT-ALGEBRA [J].
BERNARD, D ;
FELDER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :145-168
[9]  
BOST JB, 1987, ASTERISQUE, P113
[10]  
Bourbaki N, 1968, GROUPES ALGEBRES LIE