WESS-ZUMINO-WITTEN CONFORMAL FIELD-THEORY FOR SIMPLY LACED GROUPS AT LEVEL ONE

被引:7
作者
CHARPENTIER, E
GAWEDZKI, K
机构
[1] U.F.R. de Mathématiques, couloir 45-55, 5ième étage, Université Paris VII, 2 place Jussieu
[2] C.N.R.S., I.H.E.S., 91440 Bures-sur-Yvette
关键词
D O I
10.1016/0003-4916(92)90047-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the propagation amplitudes of the Wess-Zumino-Witten conformal field theory on a general Riemann surface with boundary, for the simply laced groups and at level one. It is shown how the cocycles correcting the free field exponentials in the Frenkel-Kac and Segal vertex operator representation of the affine Kac-Moody symmetries of the model extend to the general amplitudes. © 1992.
引用
收藏
页码:233 / 294
页数:62
相关论文
共 58 条
[51]  
SEGAL G, 1989, 9TH INT C MATH PHYS
[52]  
SONODA H, 1988, NUCL PHYS B, V311, P401, DOI 10.1016/0550-3213(88)90066-1
[53]  
TSUKADA H, 1988, THESIS U CALIFORNIA
[54]   OPERATOR FORMULATION ON RIEMANN SURFACES [J].
VAFA, C .
PHYSICS LETTERS B, 1987, 190 (1-2) :47-54
[55]   CONFORMAL THEORIES AND PUNCTURED SURFACES [J].
VAFA, C .
PHYSICS LETTERS B, 1987, 199 (02) :195-202
[56]   QUANTUM-FIELD THEORY AND THE JONES POLYNOMIAL [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :351-399
[57]   NON-ABELIAN BOSONIZATION IN 2 DIMENSIONS [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (04) :455-472
[58]  
ZAMOLODXHIKOV AB, 1989, COMMUNICATION