THE PARAMETRIZATION INVARIANT AND GAUGE INVARIANT EFFECTIVE ACTIONS IN QUANTUM-FIELD THEORY

被引:45
作者
ODINTSOV, SD
机构
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 1990年 / 38卷 / 05期
关键词
D O I
10.1002/prop.2190380504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The review of formulation and methods of calculation of the parametrization and gauge invariant effective actions in quantum field theory is given. As an example the Vilkovisky‐De Witt Effective action (EA) is studied (this EA is a natural representative of gauge and parametrization invariant EA's). The examples where the use of the standard EA leads to the ambiguity are demonstrated. This happens as the result of dependence of the standard EA upon the choice of gauge condition. These examples are as follows: Coleman‐Weinberg potential in the finite theories and symmetry breaking, EA in quantum gravity with matter and d = 5 gauged supergravity, the possibility of spontaneous supersymmetry breaking in N = 1 supergravity and the spontaneous compactification in the multidimensional R2‐gravity. In all these cases the one‐loop Vilkovisky‐De Witt EA is found and therefore the problem of gauge dependence of EA is solved. The dependence of standard EA of composite fields upon the gauge is studied for the general gauge theories. The class of gauge and parametrization invariant EA's of the composite fields is offered. Copyright © 1990 WILEY‐VCH Verlag GmbH & Co. KGaA
引用
收藏
页码:371 / 391
页数:21
相关论文
共 134 条
[11]   KALUZA-KLEIN THEORIES [J].
BAILIN, D ;
LOVE, A .
REPORTS ON PROGRESS IN PHYSICS, 1987, 50 (09) :1087-&
[12]  
BANDJBARDAEMI S, 1985, PHYS LETT B, V151, P343
[13]  
BARDEEN WA, 1988, 881491 PREPR FERM
[14]   THE GENERALIZED SCHWINGER-DEWITT TECHNIQUE IN GAUGE-THEORIES AND QUANTUM-GRAVITY [J].
BARVINSKY, AO ;
VILKOVISKY, GA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 119 (01) :1-74
[15]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[16]   RENORMALIZATION OF ABELIAN HIGGS-KIBBLE MODEL [J].
BECCHI, C ;
ROUET, A ;
STORA, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 42 (02) :127-162
[17]  
BELUCCI S, 1986, PHYS REV D, V36, P1127
[18]  
Birrell N. D., 1982, Quantum fields in curved space
[19]   LOW-ENERGY PREDICTIONS OF A 2-LOOP FINITE SUPERSYMMETRIC SU5 THEORY [J].
BJORKMAN, JE ;
JONES, DRT ;
RABY, S .
NUCLEAR PHYSICS B, 1985, 259 (2-3) :503-532
[20]   FEATURES OF FINITE QUANTUM-FIELD THEORIES [J].
BOHM, M ;
DENNER, A .
NUCLEAR PHYSICS B, 1987, 282 (01) :206-234