PROVABLY GOOD MESH GENERATION

被引:131
作者
BERN, M
EPPSTEIN, D
GILBERT, J
机构
[1] Xerox Palo Alto Research Center, Palo Alto, CA 94304
关键词
D O I
10.1016/S0022-0000(05)80059-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We study several versions of the problem of generating triangular meshes for finite element methods. We show how to triangulate a planar point set or polygonally bounded domain with triangles of bounded aspect ratio; how to triangulate a planar point set with triangles having no obtuse angles; how to triangulate a point set in arbitrary dimension with simplices of bounded aspect ratio; and how to produce a linear-size Delaunay triangulation of a multi-dimensional point set by adding a linear number of extra points. All our triangulations have size (number of triangles) within a constant factor of optimal and run in optimal time O(n log n + k) with input of size n and output of size k. No previous work on mesh generation simultaneously guarantees well-shaped elements and small total size. (C) 1994 Academic Press, Inc.
引用
收藏
页码:384 / 409
页数:26
相关论文
共 29 条
[1]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[2]   NONOBTUSE TRIANGULATION OF POLYGONS [J].
BAKER, BS ;
GROSSE, E ;
RAFFERTY, CS .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :147-168
[3]  
Bank R.E., 1990, PLTMG USERS GUIDE
[4]  
BARTH TJ, 1989, 27 AER SCI M AIAA
[5]  
BERN M, 1992, COMPUTING EUCLIDEAN
[6]  
BERN M, 1991, 7TH ACM S COMPUTATIO, P342
[7]   TRIANGULATING A NONCONVEX POLYTOPE [J].
CHAZELLE, B ;
PALIOS, L .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (05) :505-526
[8]  
CHAZELLE B, 1990, 6TH P ANN S COMP GEO, P116
[9]  
CHEW LP, 1989, ALGORITHMICA, V4, P97, DOI 10.1007/BF01553881
[10]  
CHEW LP, 1989, TR89983 CORN U TECHN