CONVEX REGIONS OF LORENTZIAN MANIFOLDS

被引:8
作者
MASIELLO, A [1 ]
机构
[1] POLITECN BARI,DIPARTIMENTO MATEMAT,I-70125 BARI,ITALY
来源
ANNALI DI MATEMATICA PURA ED APPLICATA | 1994年 / 167卷
关键词
D O I
10.1007/BF01760337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the geodesic connectedness of some open connected subsets (regions) of a Lorentzian manifold, using a convexity property of the boundary of such regions. Necessary and sufficient conditions on the metric are given for the convexity of the boundary of such regions. Finally it is presented a result on the geodesic connectedeness of the whole manifold which relates the asymptotic behaviour of the coefficients of the metric to the convexity of the boundary of a family of regions which cover the manifold.
引用
收藏
页码:299 / 322
页数:24
相关论文
共 20 条
[1]   PSEUDOCONVEXITY AND GEODESIC CONNECTEDNESS [J].
BEEM, JK ;
PARKER, PE .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :137-142
[2]   EXISTENCE OF GEODESICS FOR THE LORENTZ METRIC OF A STATIONARY GRAVITATIONAL-FIELD [J].
BENCI, V ;
FORTUNATO, D .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (01) :27-35
[3]  
BENCI V, 1992, PITMAN RES, V243, P21
[4]   ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES [J].
BENCI, V ;
FORTUNATO, D ;
GIANNONI, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (01) :79-102
[5]  
BENCI V, 992 U BAR DIP PREPR
[6]  
BENCI V, 592 U BAR DIP MAT PR
[7]  
BENCI V, IN PRESS ADV MATH
[8]  
BENCI V, IN PRESS ANN SC NORM
[9]   DOMAIN OF DEPENDENCE [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) :437-&
[10]   ON THE EXISTENCE OF GEODESICS ON STATIONARY LORENTZ MANIFOLDS WITH CONVEX BOUNDARY [J].
GIANNONI, F ;
MASIELLO, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) :340-369