FINITE-DIMENSIONAL INERTIAL FORMS FOR THE 2D NAVIER-STOKES EQUATIONS

被引:38
作者
KWAK, M
机构
关键词
D O I
10.1512/iumj.1992.41.41051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we explain how the long-time dynamics of 2D Navier-Stokes (N-S) equations with periodic boundary conditions on a suitable bounded region OMEGA in R2 can be described completely by a finite dimensional system of ordinary differential equations. Our approach is to imbed the 2D N-S equations into a reactions diffusion system which possesses exactly the same asymptotic dynamics. We then prove the existence of an inertial manifold for the transformed equations and we interpret the dynamics of N-S equations via the inertial form of the transformed equations.
引用
收藏
页码:927 / 981
页数:55
相关论文
共 37 条
[1]  
ABERGEL F, 1989, MATH MODELLING NUMER, V23, P3259
[2]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[3]  
BABIN AV, 1983, J MATH PURE APPL, V62, P441
[4]  
BABIN AV, 1983, J SOVIET MATH, V28, P619
[5]   DISSIPATIVE PERIODIC PROCESSES [J].
BILLOTTI, JE ;
LASALLE, JP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (06) :1082-&
[6]   INVARIANT-MANIFOLDS FOR FLOWS IN BANACH-SPACES [J].
CHOW, SN ;
LU, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (02) :285-317
[7]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[8]   ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE [J].
CONSTANTIN, P ;
FOIAS, C ;
TEMAM, R .
PHYSICA D, 1988, 30 (03) :284-296
[9]   DETERMINING MODES AND FRACTAL DIMENSION OF TURBULENT FLOWS [J].
CONSTANTIN, P ;
FOIAS, C ;
MANLEY, OP ;
TEMAM, R .
JOURNAL OF FLUID MECHANICS, 1985, 150 (JAN) :427-440
[10]  
CONSTANTIN P, 1985, MEM AM MATH SOC, V314