ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE

被引:149
作者
CONSTANTIN, P
FOIAS, C
TEMAM, R
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
[2] UNIV PARIS 11,ANALYSE NUMER,F-91405 ORSAY,FRANCE
来源
PHYSICA D | 1988年 / 30卷 / 03期
基金
美国国家科学基金会;
关键词
FLUID DYNAMICS - MATHEMATICAL TECHNIQUES - Nonlinear Equations;
D O I
10.1016/0167-2789(88)90022-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a new version of the Sobolev-Lieb-Thirring inequality, we derive an upper bound for the dimension of the universal attractor for two-dimensional space periodic Navier-Stokes equations. This estimate is optimal up to a logarithmic correction. The relevance of this estimate to turbulence and related results are both briefly discussed.
引用
收藏
页码:284 / 296
页数:13
相关论文
共 26 条
[1]  
BABIN AV, 1983, USP MAT NAUK, V38, P133
[2]  
Batchelor G. K., 1969, PHYS FLUIDS, V12, pII, DOI [10.1063/1.1692443, DOI 10.1063/1.1692443]
[3]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[4]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[5]   DETERMINING MODES AND FRACTAL DIMENSION OF TURBULENT FLOWS [J].
CONSTANTIN, P ;
FOIAS, C ;
MANLEY, OP ;
TEMAM, R .
JOURNAL OF FLUID MECHANICS, 1985, 150 (JAN) :427-440
[7]  
CONSTANTIN P, INTEGRAL INERTIAL MA
[8]  
CONSTANTIN P, 1985, MEMOIRS AMS, V314
[9]   ASYMPTOTIC ANALYSIS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
MANLEY, OP ;
TEMAM, R ;
TREVE, YM .
PHYSICA D, 1983, 9 (1-2) :157-188
[10]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339