ON THE DIMENSION OF THE ATTRACTORS IN TWO-DIMENSIONAL TURBULENCE

被引:151
作者
CONSTANTIN, P
FOIAS, C
TEMAM, R
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
[2] UNIV PARIS 11,ANALYSE NUMER,F-91405 ORSAY,FRANCE
来源
PHYSICA D | 1988年 / 30卷 / 03期
基金
美国国家科学基金会;
关键词
FLUID DYNAMICS - MATHEMATICAL TECHNIQUES - Nonlinear Equations;
D O I
10.1016/0167-2789(88)90022-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a new version of the Sobolev-Lieb-Thirring inequality, we derive an upper bound for the dimension of the universal attractor for two-dimensional space periodic Navier-Stokes equations. This estimate is optimal up to a logarithmic correction. The relevance of this estimate to turbulence and related results are both briefly discussed.
引用
收藏
页码:284 / 296
页数:13
相关论文
共 26 条
[11]  
FOIAS C, IN PRESS ATTRACTORS
[12]   INERTIAL RANGES IN 2-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1967, 10 (07) :1417-+
[13]  
LADYZHENSKAIA OA, BOUNDARY VALUES PROB, V14
[14]  
LANDAU LD, 1953, FLUID MECHANICS
[15]   AN LP BOUND FOR THE RIESZ AND BESSEL POTENTIALS OF ORTHONORMAL FUNCTIONS [J].
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 51 (02) :159-165
[16]   ON CHARACTERISTIC EXPONENTS IN TURBULENCE [J].
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (04) :473-480
[17]  
Mandelbrot BB., 1977, FRACTALS FORM CHANCE
[18]   AN EXAMPLE OF ABSENCE OF TURBULENCE FOR ANY REYNOLDS-NUMBER [J].
MARCHIORO, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (01) :99-106
[19]  
Minea G., 1976, REV ROUMAINE MATH PU, V21, P1071