In cultured cerebellar granule cells, the total amount of fodrin alpha-subunit increased 3-fold between 0 and 10 days in vitro and fodrin mRNA increased 5-fold. The exposure of cerebellar neurons to NMDA induced the accumulation of a 150 kd proteolytic fragment of fodrin. The NMDA-induced breakdown of fodrin was time-, concentration-, and Ca2+-dependent and was inhibited by APV, Mg2+,or the calpain I inhibitor N-acetyl-Leu-Leu-norleucinal. Kainate caused fodrin proteolysis through indirect activation of NMDA receptors. Quisqualate was ineffective. The NMDA-induced degradation of fodrin occurred under conditions that did not cause degeneration of cultured cerebellar neurons. These results show that Ca2+/calpain I-dependent proteolysis of fodrin is selectively associated with NMDA receptor activation; however, fodrin proteolysis per se does not play a causal role in NMDA-induced toxicity in cerebellar granule cells.