WORMHOLE COSMIC STRINGS

被引:38
作者
CLEMENT, G
机构
[1] Laboratoire de Gravitation et Cosmologie Relativistes, Université Pierre et Marie Curie, CNRS/URA769, 75252 Paris Cedex 05, Boîte 142
来源
PHYSICAL REVIEW D | 1995年 / 51卷 / 12期
关键词
D O I
10.1103/PhysRevD.51.6803
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct regular multiwormhole solutions to a gravitating model in three space-time dimensions, and extend these solutions to cylindrical traversable wormholes in four and five dimensions. We then discuss the possibility of identifying wormhole mouths in pairs to give rise to Wheeler wormholes. Such an identification is consistent with the original field equations only in the absence of the -model source, but with possible naked cosmic string sources. The resulting Wheeler wormhole space-times are flat outside the sources and may be asymptotically Minkowskian. © 1995 The American Physical Society.
引用
收藏
页码:6803 / 6809
页数:7
相关论文
共 31 条
[21]   WORMHOLES IN SPACETIME AND THEIR USE FOR INTERSTELLAR TRAVEL - A TOOL FOR TEACHING GENERAL-RELATIVITY [J].
MORRIS, MS ;
THORNE, KS .
AMERICAN JOURNAL OF PHYSICS, 1988, 56 (05) :395-412
[22]   WORMHOLES, TIME MACHINES, AND THE WEAK ENERGY CONDITION [J].
MORRIS, MS ;
THORNE, KS ;
YURTSEVER, U .
PHYSICAL REVIEW LETTERS, 1988, 61 (13) :1446-1449
[23]   MAGNETIC VORTICES FROM A NONLINEAR SIGMA-MODEL WITH LOCAL SYMMETRY [J].
NARDELLI, G .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2524-2527
[24]   GENERALIZED NON-LINEAR SIGMA-MODELS IN CURVED SPACE AND SPONTANEOUS COMPACTIFICATION [J].
OMERO, C ;
PERCACCI, R .
NUCLEAR PHYSICS B, 1980, 165 (02) :351-364
[25]   TRAVERSABLE WORMHOLES IN (2 + 1) DIMENSIONS [J].
PERRY, GP ;
MANN, RB .
GENERAL RELATIVITY AND GRAVITATION, 1992, 24 (03) :305-321
[26]  
Staruszkiewicz A., 1963, ACTA PHYS POL, V24, P735
[27]   TRAVERSABLE WORMHOLES FROM SURGICALLY MODIFIED SCHWARZSCHILD SPACETIMES [J].
VISSER, M .
NUCLEAR PHYSICS B, 1989, 328 (01) :203-212
[28]   TRAVERSABLE WORMHOLES - SOME SIMPLE EXAMPLES [J].
VISSER, M .
PHYSICAL REVIEW D, 1989, 39 (10) :3182-3184
[29]  
Wheeler J.A., 1963, GEOMETRODYNAMICS
[30]   MODEL FOR A ONE-KINK METRIC [J].
WILLIAMS, JG ;
ZIA, RKP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (01) :1-5