FRACTAL SPECTRUM AND ANOMALOUS DIFFUSION IN THE KICKED HARPER MODEL

被引:75
作者
ARTUSO, R
CASATI, G
SHEPELYANSKY, D
机构
[1] NATL INST NUCL PHYS,MILAN,ITALY
[2] IST NAZL FIS NUCL,I-22100 COMO,ITALY
[3] UNIV TOULOUSE 3,PHYS QUANT LAB,F-31062 TOULOUSE,FRANCE
[4] UNIV COMO,DIPARTIMENTO FIS,I-22100 COMO,ITALY
关键词
D O I
10.1103/PhysRevLett.68.3826
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a kicked system on the cylinder obtained upon quantization of a chaotic area-preserving map. We use the thermodynamic formalism to investigate the scaling properties of the fractal spectrum. In time evolution we observe anomalous diffusion with an exponent closely related to the Hausdorff dimension of the spectrum, and dependent upon the parameters of the system.
引用
收藏
页码:3826 / 3829
页数:4
相关论文
共 32 条
[11]   EVOLUTION AND EXACT EIGENSTATES OF A RESONANT QUANTUM SYSTEM [J].
CHANG, SJ ;
SHI, KJ .
PHYSICAL REVIEW A, 1986, 34 (01) :7-22
[12]  
Chirikov BV, 1979, PHYS REP, V52, P265
[13]  
CVITANOVIC P, 1987, NONLINEAR EVOLUTION
[14]  
DORIZZI B, 1984, J STAT PHYS, V37, P93, DOI 10.1007/BF01012906
[15]   SOME CHARACTERIZATIONS OF STRANGE SETS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :919-924
[16]   SCALING SPECTRA AND RETURN TIMES OF DYNAMIC-SYSTEMS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :925-932
[17]   METAMORPHOSIS OF A CANTOR SPECTRUM DUE TO CLASSICAL CHAOS [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 67 (26) :3635-3638
[18]   NEW CLASS OF LEVEL STATISTICS IN QUANTUM-SYSTEMS WITH UNBOUNDED DIFFUSION [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (13) :1651-1654
[19]  
GEISEL T, IN PRESS QUANTUM CHA
[20]   SPECTRAL PROPERTIES OF QUANTUM DIFFUSION ON DISCRETE LATTICES [J].
GUARNERI, I .
EUROPHYSICS LETTERS, 1989, 10 (02) :95-100