DOMAIN IMBEDDING METHODS FOR THE STOKES EQUATIONS

被引:24
作者
BORGERS, C
机构
[1] Department of Mathematics, University of Michigan, Ann Arbor, 48109, MI
关键词
AMS(MOS); 65N20; 65F10; CR:; G1.3; G1.8;
D O I
10.1007/BF01386422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study direct and iterative domain imbedding methods for the Stokes equations on certain non-rectangular domains in two space dimensions. We analyze a continuous analog of numerical domain imbedding for bounded, smooth domains, and give an example of a simple numerical algorithm suggested by the continuous analysis. This algorithms is applicable for simply connected domains which can be covered by rectangular grids, with uniformly spaced grid lines in at least one coordinate direction. We also discuss a related FFT-based fast solver for Stokes problems with physical boundary conditions on rectangles, and present some numerical results. © 1990 Springer-Verlag.
引用
收藏
页码:435 / 451
页数:17
相关论文
共 21 条
[12]  
FINOGENOV SA, 1988, SOV J NUMER ANAL MAT, V3, P301
[13]  
FORTIN M, 1971, J MECANIQUE, V10, P357
[14]  
Hockney R. W., 1970, Methods in computational physics. IX. Plasma physics, P135
[15]  
Marchuk G.I., 1986, SOVET J NUMER ANAL M, V1, P3, DOI [10.1515/rnam.1986.1.1.3, DOI 10.1515/RNAM.1986.1.1.3]
[16]  
Proskurowski W., 1979, ACM Transactions on Mathematical Software, V5, P36, DOI 10.1145/355815.355818
[17]   A FINITE-ELEMENT CAPACITANCE MATRIX-METHOD FOR THE NEUMANN PROBLEM FOR LAPLACES-EQUATION [J].
PROSKUROWSKI, W ;
WIDLUND, O .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (04) :410-425
[18]   NUMERICAL-SOLUTION OF HELMHOLTZS EQUATION BY CAPACITANCE MATRIX-METHOD [J].
PROSKUROWSKI, W ;
WIDLUND, O .
MATHEMATICS OF COMPUTATION, 1976, 30 (135) :433-468
[19]  
Rudin W., 1973, FUNCTIONAL ANAL
[20]  
STUBEN K, 1982, LECTURE NOTES MATH, V960