METRICS AND DUAL OPERATORS

被引:14
作者
HARNETT, G
机构
[1] Department of Mathematics, Florida Atlantic University, Boca Raton
关键词
D O I
10.1063/1.529098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a four-dimensional vector space it is possible to define independently of a metric the notion of a dual operator acting on bivectors. It is shown that the map which takes a conformal class of metrics together with an orientation to the induced dual operator is an isomorphism. For each metric signature type, this map is equivalent to an isomorphism of certain homogeneous spaces.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 14 条
[11]  
PLABANSKI JF, 1977, J MATH PHYS, V18, P2511
[12]  
Salamon S. M, 1989, RIEMANNIAN GEOMETRY
[13]  
TAUB AH, 1966, PERSPECTIVES GEOMETR, P360
[14]   ON INTEGRABILITY PROPERTIES OF SU (2) YANG-MILLS FIELDS .1. INFINITESIMAL PART [J].
URBANTKE, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (07) :2321-2324