A SPACE-TIME VARIATIONAL FORMULATION FOR THE BOUNDARY INTEGRAL-EQUATION IN A 2D ELASTIC CRACK PROBLEM

被引:21
作者
BECACHE, E
DUONG, TH
机构
[1] INRIA, F-78153 LE CHESNAY, FRANCE
[2] UNIV COMPIEGNE, F-60206 COMPIEGNE, FRANCE
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1994年 / 28卷 / 02期
关键词
D O I
10.1051/m2an/1994280201411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the transient elastic wave scattering by a crack in R2 by means of Boundary Integral Equation Method. The analysis of the Laplace-Fourier transform (in time) of the integral operator allows to obtain existence, uniqueness and continuity dependence of the solution with respect to the data, in a Sobolev functional framework. A regularisation of the hypersingular BIE is applied in order to remove the hypersingularity and to write the associated time-space variational formulation on a tractable form. A Galerkin-type approximation is then performed to solve this variational formulation and we finally present some numerical results.
引用
收藏
页码:141 / 176
页数:36
相关论文
共 28 条
  • [11] Dautray R, 1985, ANAL MATH CALCUL NUM, V2
  • [12] DUONG TH, 1990, JAPAN J APPL MATH, V7, P489
  • [13] DUONG TH, 1992, INTEGR EQUAT OPER TH, V15, P427
  • [14] BOUNDARY-VALUE-PROBLEMS FOR THE SYSTEM OF ELASTICITY THEORY IN UNBOUNDED-DOMAINS - KORNS INEQUALITIES
    KONDRATEV, VA
    OLEINIK, OA
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (05) : 65 - 119
  • [15] KRISHNASAMY G, 1991, DEV BOUNDARY ELEMENT, V7
  • [16] LIONS JL, 1968, PROBLEMES AUX LIMITE, V1
  • [17] LUBICH C, NUMERISCHE MATH
  • [18] ON BOUNDARY INTEGRAL-EQUATIONS FOR CRACK PROBLEMS
    MARTIN, PA
    RIZZO, FJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1989, 421 (1861): : 341 - 355
  • [19] Nedelec J.C., 1982, INTEGR EQUAT OPER TH, V5, P562
  • [20] NEDELEC JC, 1983, CMAP99 EC POLYT INT