Cholinergic properties are induced in sympathetic neurons by several factors applied to entire neurons in culture. Evidence from work with the rat sweat gland model indicates that factors located in target tissues can induce cholinergic differentiation in vivo. We now report that when leukemia inhibitory factor (LIF), heart cell-conditioned medium (HCCM), or dermal fibroblast-conditioned medium (DFCM) is applied to only distal neurites in compartmented cultures of rat sympathetic neurons, the neurons exhibit an increase in specific choline acetyltransferase activity and a concomitant decrease in levels of tyrosine hydroxylase. LIF, HCCM, and DFCM also induce neurite fasciculation, thus suggesting an additional role of cholinergic switching factors in regulating axon-axon and/or axon-substrate adhesion. These results demonstrate that rat sympathetic neurons have the cellular machinery to respond to cholinergic differentiation cues located in peripheral targets, analogous to the response to nerve growth factor. © 1992.