FINITE-TIME VORTEX SINGULARITY IN A MODEL OF 3-DIMENSIONAL EULER FLOWS

被引:14
作者
BHATTACHARJEE, A
WANG, XG
机构
[1] Department of Applied Physics, Columbia University, New York
关键词
D O I
10.1103/PhysRevLett.69.2196
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An analytical model of three-dimensional Euler flows which exhibits a finite-time singularity is given. The singularity in vorticity occurs at a velocity field null (stagnation point) which lies on the line joining two vorticity field nulls. It is shown that the vorticity diverges inversely with time.
引用
收藏
页码:2196 / 2199
页数:4
相关论文
共 24 条
[1]  
ASHHURST WT, 1987, PHYS REV LETT, V58, P1632
[2]   RECONNECTION IN ORTHOGONALLY INTERACTING VORTEX TUBES - DIRECT NUMERICAL SIMULATIONS AND QUANTIFICATIONS [J].
BORATAV, ON ;
PELZ, RB ;
ZABUSKY, NJ .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (03) :581-605
[3]   SMALL-SCALE STRUCTURE OF THE TAYLOR-GREEN VORTEX [J].
BRACHET, ME ;
MEIRON, DI ;
ORSZAG, SA ;
NICKEL, BG ;
MORF, RH ;
FRISCH, U .
JOURNAL OF FLUID MECHANICS, 1983, 130 (MAY) :411-452
[4]   BLOW-UP OF UNSTEADY TWO-DIMENSIONAL EULER AND NAVIER-STOKES SOLUTIONS HAVING STAGNATION-POINT FORM [J].
CHILDRESS, S ;
IERLEY, GR ;
SPIEGEL, EA ;
YOUNG, WR .
JOURNAL OF FLUID MECHANICS, 1989, 203 :1-22
[5]  
Fukao S., 1975, Report of Ionosphere and Space Research in Japan, V29, P133
[6]   NUMERICAL COMPUTATION OF 3D INCOMPRESSIBLE IDEAL FLUIDS WITH SWIRL [J].
GRAUER, R ;
SIDERIS, TC .
PHYSICAL REVIEW LETTERS, 1991, 67 (25) :3511-3514
[7]  
Greene J. M., 1990, Topological Fluid Mechanics. Proceedings of the IUTAM Symposium, P478
[8]   GEOMETRICAL PROPERTIES OF 3-DIMENSIONAL RECONNECTING MAGNETIC-FIELDS WITH NULLS [J].
GREENE, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1988, 93 (A8) :8583-8590
[9]  
JUDOVIC VI, 1963, USSR COMP MATH MATH, V3, P1407
[10]  
Kato T., 1967, ARCH RATION MECH AN, V25, P188, DOI [10.1007/BF00251588, DOI 10.1007/BF00251588]