SOLUTION STRUCTURE OF THE DNA-BINDING PROTEIN SAC7D FROM THE HYPERTHERMOPHILE SULFOLOBUS-ACIDOCALDARIUS

被引:72
作者
EDMONDSON, SP
QIU, LS
SHRIVER, JW
机构
[1] Department of Medical Biochemistry, School of Medicine, Southern Illinois University, Carbondale
关键词
D O I
10.1021/bi00041a004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Sac7 proteins from the hyperthermophile Sulfolobus acidocaldarius are a heterogeneous mixture of small, thermostable, nonspecific DNA-binding proteins. One of these proteins, Sac7d, has been overexpressed in Escherichia coli to provide a homogeneous preparation for structure, stability, and function studies. We present here essentially complete sequence-specific H-1 NMR assignments for Sac7d, a delineation of secondary structural elements, and the high-resolution solution structure obtained from a full relaxation matrix refinement. The final structure provides an excellent fit to the NMR data with an NOE R-factor of 0.27 for backbone NOEs. The structure has a compact globular fold with 82% of the sequence involved in regular secondary structure: an antiparallel two-stranded beta-ribbon with a tight turn, followed by a short 3(10) helix, an antiparallel three-stranded beta-sheet, another short 3(10) helix, and finally four turns of alpha-helix. The amphipathic cr-helix packs across the hydrophobic face of the three-stranded beta-sheet in an open-faced sandwich arrangement with at least one turn of the helix exposed beyond the sheet. The hydrophobic face of the beta-ribbon packs against a corner of the twisted beta-sheet. The single tryptophan responsible for the 88% fluorescence quenching upon DNA binding is exposed on the surface of the three-stranded beta-sheet. Lysines 5 and 7, whose monomethylation may be associated with enhanced thermostability, are highly solvent exposed along the inner edge of the two-stranded ribbon. The structure of Sac7d differs in many respects from that reported for the homologous native Sso7d [Baumann et al. (1994) Nature Struct. Biol. 1, 808] with a backbone RMSD greater than 3.0 Angstrom, largely due to the packing and length of the C-terminal alpha-helix which may be important in Sac7d DNA binding.
引用
收藏
页码:13289 / 13304
页数:16
相关论文
共 76 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[2]   THERMOSTABLE NAD+-DEPENDENT ALCOHOL-DEHYDROGENASE FROM SULFOLOBUS-SOLFATARICUS - GENE AND PROTEIN-SEQUENCE DETERMINATION AND RELATIONSHIP TO OTHER ALCOHOL DEHYDROGENASES [J].
AMMENDOLA, S ;
RAIA, CA ;
CARUSO, C ;
CAMARDELLA, L ;
DAURIA, S ;
DEROSA, M ;
ROSSI, M .
BIOCHEMISTRY, 1992, 31 (49) :12514-12523
[3]   CYTOCHROME-AA3 FROM SULFOLOBUS-ACIDOCALDARIUS A SINGLE-SUBUNIT, QUINOL-OXIDIZING ARCHAEBACTERIAL TERMINAL OXIDASE [J].
ANEMULLER, S ;
SCHAFER, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 191 (02) :297-305
[4]  
[Anonymous], AMBER 4 0
[5]   DISTANCE MEASUREMENT AND STRUCTURE REFINEMENT WITH NOE DATA [J].
BALEJA, JD ;
MOULT, J ;
SYKES, BD .
JOURNAL OF MAGNETIC RESONANCE, 1990, 87 (02) :375-384
[6]   SOLUTION STRUCTURE AND DNA-BINDING PROPERTIES OF A THERMOSTABLE PROTEIN FROM THE ARCHAEON SULFOLOBUS-SOLFATARICUS [J].
BAUMANN, H ;
KNAPP, S ;
LUNDBACK, T ;
LADENSTEIN, R ;
HARD, T .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (11) :808-819
[7]   DNA-BINDING SURFACE OF THE SSO7D PROTEIN FROM SULFOLOBUS-SOLFATARICUS [J].
BAUMANN, H ;
KNAPP, S ;
KARSHIKOFF, A ;
LADENSTEIN, R ;
HARD, T .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (05) :840-846
[8]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[9]  
BAX A, 1989, METHOD ENZYMOL, V176, P151
[10]   COMPARISON OF THE X-RAY STRUCTURE OF NATIVE RUBREDOXIN FROM PYROCOCCUS-FURIOSUS WITH THE NMR STRUCTURE OF THE ZINC-SUBSTITUTED PROTEIN [J].
BLAKE, PR ;
DAY, MW ;
HSU, BT ;
JOSHUATOR, L ;
PARK, JB ;
HARE, DR ;
ADAMS, MWW ;
REES, DC ;
SUMMERS, MF .
PROTEIN SCIENCE, 1992, 1 (11) :1522-1525