MINIMUM-DIMENSION TRACE MAPS FOR SUBSTITUTION SEQUENCES

被引:20
作者
AVISHAI, Y
BEREND, D
GLAUBMAN, D
机构
[1] BEN GURION UNIV NEGEV, DEPT MATH & COMP SCI, IL-84105 BEER SHEVA, ISRAEL
[2] MATH SCI RES INST, BERKELEY, CA 94720 USA
关键词
D O I
10.1103/PhysRevLett.72.1842
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct trace maps for products of 2 x 2 matrices generated by arbitrary substitution sequences. The dimension of the underlying space of our trace map is the minimal possible, namely 3r - 3 for an alphabet of size r greater-than-or-equal-to 2.
引用
收藏
页码:1842 / 1845
页数:4
相关论文
共 54 条
[1]   QUASIPERIODIC DYNAMICS FOR A GENERALIZED 3RD-ORDER FIBONACCI SERIES [J].
ALI, MK ;
GUMBS, G .
PHYSICAL REVIEW B, 1988, 38 (10) :7091-7093
[2]  
ALLOUCHE JP, 1986, CR ACAD SCI II, V302, P1135
[3]   SCALING PROPERTIES OF A STRUCTURE INTERMEDIATE BETWEEN QUASIPERIODIC AND RANDOM [J].
AUBRY, S ;
GODRECHE, C ;
LUCK, JM .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (5-6) :1033-1075
[4]   TRACE MAPS FOR ARBITRARY SUBSTITUTION SEQUENCES [J].
AVISHAI, Y ;
BEREND, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (10) :2437-2443
[5]   TRANSMISSION THROUGH A FIBONACCI CHAIN [J].
AVISHAI, Y ;
BEREND, D .
PHYSICAL REVIEW B, 1991, 43 (09) :6873-6879
[6]   TRANSMISSION THROUGH A THUE-MORSE CHAIN [J].
AVISHAI, Y ;
BEREND, D .
PHYSICAL REVIEW B, 1992, 45 (06) :2717-2724
[7]   SPECTRUM AND EXTENDED STATES IN A HARMONIC CHAIN WITH CONTROLLED DISORDER - EFFECTS OF THE THUE-MORSE SYMMETRY [J].
AXEL, F ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1989, 57 (5-6) :1013-1047
[8]   PERIODIC CLUSTERING IN THE SPECTRUM OF QUASI-PERIODIC KRONIG-PENNEY MODELS [J].
BAAKE, M ;
JOSEPH, D ;
KRAMER, P .
PHYSICS LETTERS A, 1992, 168 (03) :199-208
[9]   TRACE MAPS, INVARIANTS, AND SOME OF THEIR APPLICATIONS [J].
BAAKE, M ;
GRIMM, U ;
JOSEPH, D .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (6-7) :1527-1550
[10]   SPECTRAL PROPERTIES OF A TIGHT-BINDING HAMILTONIAN WITH PERIOD DOUBLING POTENTIAL [J].
BELLISSARD, J ;
BOVIER, A ;
GHEZ, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (02) :379-399