THE K-EDGE-CONNECTED SPANNING SUBGRAPH POLYHEDRON

被引:26
作者
CHOPRA, S
机构
关键词
K-EDGE-CONNECTED; POLYHEDRON; FACET; OUTERPLANAR GRAPH;
D O I
10.1137/S0895480191222665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the polyhedron P(k)(G) defined by the convex hull of k-edge-connected spanning subgraphs of a given graph G where multiple copies of an edge are allowed. A complete inequality description of P(k)(G) when k is odd and G is an outer planar graph is given. A family of facet-defining inequalities of P(k)(G) that have the same support graph but coefficients that depend on k is-an-element-of {4r - 2, 4r - 1, 4r + 1, r is-an-element-of {1, 2....}} is described.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 14 条
[1]   ON THE STRUCTURE OF MINIMUM-WEIGHT K-CONNECTED SPANNING NETWORKS [J].
BIENSTOCK, D ;
BRICKELL, EF ;
MONMA, CL .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) :320-329
[2]  
BOYD SC, 1991, TR9118 U OTT COMP SC
[3]  
CHOPRA S, 1991, K EDGE CONNECTED SPA
[4]  
CHRISTOFIDES N, OPERATIONAL RES 81, P705
[5]   THE TRAVELING SALESMAN PROBLEM ON A GRAPH AND SOME RELATED INTEGER POLYHEDRA [J].
CORNUEJOLS, G ;
FONLUPT, J ;
NADDEF, D .
MATHEMATICAL PROGRAMMING, 1985, 33 (01) :1-27
[6]   4 PROBLEMS ON GRAPHS WITH EXCLUDED MINORS [J].
GAN, H ;
JOHNSON, EL .
MATHEMATICAL PROGRAMMING, 1989, 45 (02) :311-330
[7]  
Garey M.R., 1990, COMPUTERS INTRACTABI
[8]  
GOEMANS MX, 1990, MIT OR21690 RES REP
[9]  
GOEMANS MX, 1990, MIT OR23390 RES REP
[10]  
GROTSCHEL M, 1990, SIAM J DISCRETE MATH, V3, P502