NUMERICAL BLACK-HOLES - A MOVING GRID APPROACH

被引:12
作者
BONA, C [1 ]
MASSO, J [1 ]
STELA, J [1 ]
机构
[1] NATL CTR SUPERCOMP APPLICAT,CHAMPAIGN,IL 61821
来源
PHYSICAL REVIEW D | 1995年 / 51卷 / 04期
关键词
D O I
10.1103/PhysRevD.51.1639
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Spherically symmetric (one-dimensional) (black-hole) spacetimes are considered as a test for numerical relativity. A finite difference code, based in the hyperbolic structure of Einstein's equations with the harmonic slicing condition, is presented. Significant errors in the mass function are shown to arise from the steep gradient zone behind the black-hole horizon, which challenge the computational fluid dynamics numerical methods used in the code. The formalism is extended to moving numerical grids, which are adapted to follow horizon motion. The black-hole exterior region can then be modeled with higher accuracy. © 1995 The American Physical Society.
引用
收藏
页码:1639 / 1645
页数:7
相关论文
共 22 条
[1]  
ALCUBIERRE M, 1992, APPROACHES NUMERICAL
[2]  
ANNINOS P, IN PRESS GENERAL REL
[3]  
AUNINOS P, UNPUB
[4]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[5]  
BERNSTEIN D, 1989, FRONTIERS NUMERICAL
[6]  
BERNSTEIN D, 1993, THESIS U ILLINOIS UR
[7]  
BNARDEEN J, 1983, PHYS REP, V196, P205
[8]   NUMERICAL RELATIVITY - EVOLVING SPACETIME [J].
BONA, C ;
MASSO, J .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1993, 4 (04) :883-907
[9]   HARMONIC SYNCHRONIZATIONS OF SPACETIME [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW D, 1988, 38 (08) :2419-2422
[10]  
BONA C, 1992, APPROACHES NUMERICAL