SOLITON STABILITY IN THE O(3) SIGMA-MODEL IN (2+1) DIMENSIONS

被引:68
作者
LEESE, RA
PEYRARD, M
ZAKRZEWSKI, WJ
机构
[1] FAC SCI DIJON,F-21000 DIJON,FRANCE
[2] UNIV CALIF LOS ALAMOS SCI LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
关键词
D O I
10.1088/0951-7715/3/2/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider the instanton solutions of the O(3) sigma -model in two Euclidean dimensions as static solitons of the same model in (2+1) dimensions, and study their stability. Most of the work is numerical, based on two very different numerical procedures. On an infinite plane they find that such a soliton is, in general, unstable under small perturbations. It may either expand or contract, depending on the exact form of the initial disturbance. However, when the model is restricted to a finite region the boundary conditions can stabilise the soliton. They discuss these effects and their dependence on the initial conditions. © 1990 IOP Publishing Ltd.
引用
收藏
页码:387 / 412
页数:26
相关论文
共 10 条
[1]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[2]   GEOMETRICAL METHODS IN THE STUDY OF TOPOLOGICAL EFFECTS ON THE LATTICE [J].
GOCKELER, M .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1988, 36 (11) :801-830
[3]   CONSERVATION-LAWS IN SOME TWO-DIMENSIONAL MODELS [J].
GOLDSCHMIDT, YY ;
WITTEN, E .
PHYSICS LETTERS B, 1980, 91 (3-4) :392-396
[4]   BACKLUND-TRANSFORMATIONS FOR NONLINEAR SIGMA-MODELS WITH VALUES IN RIEMANNIAN SYMMETRIC-SPACES [J].
HARNAD, J ;
STAUBIN, Y ;
SHNIDER, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 92 (03) :329-367
[5]   DISCRETE BOGOMOLNY EQUATIONS FOR THE NONLINEAR O(3) SIGMA-MODEL IN 2 + 1 DIMENSIONS [J].
LEESE, R .
PHYSICAL REVIEW D, 1989, 40 (06) :2004-2013
[6]   DYNAMICS OF SOLUTIONS OF THE CP(N-1) MODELS IN (2+1) DIMENSIONS [J].
STOKOE, I ;
ZAKRZEWSKI, WJ .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1987, 34 (04) :491-496
[7]   Integrability of the chiral equations with torsion term [J].
Ward, R. S. .
NONLINEARITY, 1988, 1 (04) :671-679
[8]   SLOWLY-MOVING LUMPS IN THE CP1 MODEL IN (2 + 1) DIMENSIONS [J].
WARD, RS .
PHYSICS LETTERS B, 1985, 158 (05) :424-428
[9]   PSEUDOPARTICLE CONFIGURATIONS IN 2-DIMENSIONAL FERROMAGNETS [J].
WOO, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (06) :1264-1266
[10]  
ZAKHAROV VE, 1978, ZH EKSP TEOR FIZ, V47, P1017