COLLISION-STABLE WAVES IN EXCITABLE REACTION-DIFFUSION SYSTEMS

被引:60
作者
KOSEK, J
MAREK, M
机构
[1] Department of Chemical Engineering, Prague Institute of Chemical Technology, 166 28 Prague 6
关键词
D O I
10.1103/PhysRevLett.74.2134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the interaction of stable pulse solutions modeling reduction waves in the Belousov-Zhabotinsky reaction in a spatially one-dimensional reaction-diffusion system. We find that in the range of parameters close to a subcritical Hopf bifurcation the counterpropagating pulses do not annihilate in a collision but emerge after the collision with a size and shape unchanged compared to those well before the collision. Under similar conditions these pulse solutions are reflected at zero-flux surfaces (echo waves). © 1995 The American Physical Society.
引用
收藏
页码:2134 / 2137
页数:4
相关论文
共 24 条
[11]   PATTERN-FORMATION BY INTERACTING CHEMICAL FRONTS [J].
LEE, KJ ;
MCCORMICK, WD ;
OUYANG, Q ;
SWINNEY, HL .
SCIENCE, 1993, 261 (5118) :192-194
[12]  
NEWELL AC, 1985, SOLITONS MATH PHYSIC
[13]   EXCITABILITY, WAVE REFLECTION, AND WAVE SPLITTING IN A CUBIC AUTOCATALYSIS REACTION-DIFFUSION SYSTEM [J].
PETROV, V ;
SCOTT, SK ;
SHOWALTER, K .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1685) :631-642
[14]   SOLITON - NEW CONCEPT IN APPLIED SCIENCE [J].
SCOTT, AC ;
CHU, FYF ;
MCLAUGHLIN, DW .
PROCEEDINGS OF THE IEEE, 1973, 61 (10) :1443-1483
[15]  
SEVCIKOVA H, 1991, BIFURCATION CHAOS
[16]  
SMOES ML, 1980, DYNAMICS SYNERGETIC, P80
[17]   LOCALIZED STRUCTURES GENERATED BY SUBCRITICAL INSTABILITIES [J].
THUAL, O ;
FAUVE, S .
JOURNAL DE PHYSIQUE, 1988, 49 (11) :1829-1833
[18]   MATHEMATICAL-MODEL FOR SPREADING CORTICAL DEPRESSION [J].
TUCKWELL, HC ;
MIURA, RM .
BIOPHYSICAL JOURNAL, 1978, 23 (02) :257-276
[20]  
Winfree AT., 1980, GEOMENTRY BIOLOGICAL, DOI DOI 10.1007/978-3-662-22492-2