MAGGIS EQUATIONS OF MOTION AND THE DETERMINATION OF CONSTRAINT REACTIONS

被引:32
作者
PAPASTAVRIDIS, JG
机构
[1] Georgia Institute of Technology, School of Mechanical Engineering, Atlanta, GA
关键词
D O I
10.2514/3.20539
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a geometrical derivation of the constraint reaction-free equations of Maggi for mechanical systems subject to linear (first-order) nonholonomic and/or holonomic constraints. These results follow directly from the proper application of the concepts of virtual displacement and quasicoordinates to the variational equation of motion, i.e., Lagrange's principle. The method also makes clear how to compute the constraint reactions (kinetostatics) without introducing Lagrangian multipliers. © 1990 American Institute of Aeronautics and Astronautics, Inc., All rights reserved.
引用
收藏
页码:213 / 220
页数:8
相关论文
共 22 条
[1]  
Appell P., 1953, TRAITE MECANIQUE RAT, V2
[2]   RELATIONSHIP BETWEEN KANE EQUATIONS AND THE GIBBS-APPELL EQUATIONS [J].
DESLOGE, EA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1987, 10 (01) :120-122
[3]  
HADAMARD J, 1899, MOUVEMENTS ROULEMENT, P47
[4]  
HADAMARD J, 1895, MEMOIRES SOC SCI PHY, V5, P397
[5]   Nonholonomic systems [J].
Hamel, G .
MATHEMATISCHE ANNALEN, 1924, 92 :33-41
[6]  
HAMEL G, 1949, THEORETISCHE MECHANI
[8]   MULTIBODY DYNAMICS [J].
KANE, TR ;
LEVINSON, DA .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4B) :1071-1078
[9]  
KANE TR, 1986, AM J PHYS, V54, P470
[10]   QR DECOMPOSITION FOR STATE-SPACE REPRESENTATION OF CONSTRAINED MECHANICAL DYNAMIC-SYSTEMS [J].
KIM, SS ;
VANDERPLOEG, MJ .
JOURNAL OF MECHANISMS TRANSMISSIONS AND AUTOMATION IN DESIGN-TRANSACTIONS OF THE ASME, 1986, 108 (02) :183-188