END-POINT ESTIMATES FOR THE MAXIMAL OPERATOR ASSOCIATED TO SPHERICAL PARTIAL-SUMS ON RADIAL FUNCTIONS

被引:10
作者
ROMERA, E
SORIA, F
机构
关键词
D O I
10.2307/2048568
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T f(x) = sup(R>0)\S(R)f(x)\ where S(R) is the spherical partial sum operator. We show that T is bounded from the Lorentz space L(p(i)), 1(R(n) into L(p(i)), infinity-(R(n), i = 0, 1 when acting on radial functions and where P0 = [GRAPHICS]
引用
收藏
页码:1015 / 1022
页数:8
相关论文
共 11 条
[1]   THE MULTIPLIER FOR THE BALL AND RADIAL FUNCTIONS [J].
CHANILLO, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 55 (01) :18-24
[2]  
COLZANI L, CONVERGENCE EXPANSIO
[3]   THE DISK MULTIPLIER [J].
CORDOBA, A .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (01) :21-29
[4]  
Fefferman C., 1971, ANN MATH, V94, P330
[7]   WEAK BEHAVIOR OF SPHERICAL MEANS [J].
KENIG, CE ;
TOMAS, PA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (01) :48-50
[8]   ON RADIAL WEIGHTS FOR THE SPHERICAL SUMMATION OPERATOR [J].
MOCKENHAUPT, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) :174-181
[9]   ALMOST EVERYWHERE CONVERGENCE OF THE SPHERICAL PARTIAL-SUMS FOR RADIAL FUNCTIONS [J].
PRESTINI, E .
MONATSHEFTE FUR MATHEMATIK, 1988, 105 (03) :207-216
[10]  
STEIN E. M., 1971, INTRO FOURIER ANAL E