in the cells of higher eukaryotic organisms, there are. several messenger pathways of intracellular signal transduction, such as the inositol 1,4,5-trisphosphate/Ca2+ signal, voltage-dependent and -independent Ca2+ channels, adenylate cyclase/cyclic adenosine 3',5'-monophosphate, guanylate cyclase/cyclic guano sine 3',5'-monophosphate, diacylglycerol/proten kinase C, and growth factors/tyrosine kinase/tyrosine phosphatase. These pathways are present in different cell types and impinge on each other for the modulation of the cell function. Ca2+ is one of the most ubiquitous intracellular messengers mediating transcellular communication in a wide variety of cell types. Over the last two decades it has become clear that the activation of many types of cells is accompanied by an increase in cytosolic free Ca2+ concentration ([Ca2+]i) that is thought to play an important part in the sequence of events occurring during cell activation. The Ca2+ signal can be divided into two categories: receptor- and voltage-operated Ca2+ signal. This review describes and integrates some recent views of receptor-operated Ca2+ signaling and crosstalk in the context of stimulus-secretion coupling.