STATE STEERING BY LEARNING FOR A CLASS OF NONLINEAR CONTROL-SYSTEMS

被引:10
作者
LUCIBELLO, P
机构
[1] Dipartimento di Informatica e Sistemistica, Università di Roma La Sapienza, 00186 Roma
关键词
ITERATIVE METHODS; LEARNING SYSTEMS; NONLINEAR CONTROL SYSTEMS; NONLINEAR SYSTEMS;
D O I
10.1016/0005-1098(94)90012-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of steering the state of nonlinearly perturbed linear systems by learning is investigated. A family of algorithms which compute the steering control by means of successive trials on the real plant is presented. Convergence in the face of a class of nonlinear plant perturbations is proven. State feedback linearizable systems are shown to be addressable by the presented algorithms. Two examples illustrate the applicability of algorithms.
引用
收藏
页码:1463 / 1468
页数:6
相关论文
共 17 条
[1]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[2]  
ARIMOTO S, 1985, 24TH P IEEE C DEC CO, P1375
[3]  
Bryson A.E, 1975, APPL OPTIMAL CONTROL
[4]  
CASALINO G, 1984, P IASTED S ROBOTICS
[5]  
CRAIG JJ, 1984, 1984 P AM CONTR C, P1566
[6]  
Hahn W., 1967, STABILITY MOTION
[7]  
HAUSER J, 1987, 26TH IEEE C DEC CONT, P859
[8]  
Isidori A., 1989, NONLINEAR CONTROL SY, Vsecond
[9]  
Lucibello P., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P2011
[10]  
LUCIBELLO P, 1992, 31ST P IEEE C DECISI, P2531