Instability criteria for steady flows of a perfect fluid

被引:43
作者
Friedlander, Susan [1 ]
Vishik, Misha M. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1063/1.165888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An instability criterion based on the positivity of a Lyapunov-type exponent is used to study the stability of the Euler equations governing the motion of an inviscid incompressible fluid. It is proved that any flow with exponential stretching of the fluid particles is unstable. In the case of an arbitrary axisymmetric steady integrable flow, a sufficient condition for instability is exhibited in terms of the curvature and the geodesic torsion of a stream line and the helicity of the flow.
引用
收藏
页码:455 / 460
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 1986, SEL MATH SOV
[2]  
Arnold V. I., 1992, APPL MATH MECH, V36, P236
[3]  
Arnold V. I., 1966, ANN I FOURIER GRENOB, V16, P347
[4]   3-DIMENSIONAL CENTRIFUGAL-TYPE INSTABILITIES IN INVISCID TWO-DIMENSIONAL FLOWS [J].
BAYLY, BJ .
PHYSICS OF FLUIDS, 1988, 31 (01) :56-64
[5]   CHAOTIC STREAMLINES IN THE ABC FLOWS [J].
DOMBRE, T ;
FRISCH, U ;
GREENE, JM ;
HENON, M ;
MEHR, A ;
SOWARD, AM .
JOURNAL OF FLUID MECHANICS, 1986, 167 :353-391
[6]   ON THE STABILITY OF ROTATING COMPRESSIBLE AND INVISCID FLUIDS [J].
ECKHOFF, KS ;
STORESLETTEN, L .
JOURNAL OF FLUID MECHANICS, 1980, 99 (JUL) :433-448
[7]   ON STABILITY FOR SYMMETRIC HYPERBOLIC SYSTEMS .1. [J].
ECKHOFF, KS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 40 (01) :94-115
[8]   INSTABILITY CRITERIA FOR THE FLOW OF AN INVISCID INCOMPRESSIBLE FLUID [J].
FRIEDLANDER, S ;
VISHIK, MM .
PHYSICAL REVIEW LETTERS, 1991, 66 (17) :2204-2206
[9]  
Friedlander S., 1992, P NATO WORKSH TOP ME
[10]  
Friedlander Susan, 1991, Chaos, V1, P198, DOI 10.1063/1.165829