TIME-DEPENDENT PROPAGATOR WITH POINT INTERACTION

被引:35
作者
ALBEVERIO, S
BRZEZNIAK, Z
DABROWSKI, L
机构
[1] Fakultat fur Math., Ruhr-Univ., Bochum
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 14期
关键词
D O I
10.1088/0305-4470/27/14/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the time-dependent Schrodinger propagator with a point interaction in dimension n less-than-or-equal-to 3 including the new cases of n = 2 and the most general interaction supported by a point for n = 1. We also give the small-time asymptotics for n less-than-or-equal-to 3. The case n = 2 has the peculiarity of involving logarithmic terms in the expansion.
引用
收藏
页码:4933 / 4943
页数:11
相关论文
共 13 条
[1]  
ALBEVEIRO S, 1994, IN PRESS J FUNCT ANA
[2]  
ALBEVEIRO S, 1988, SOLVABLE MODELS QUAN
[3]  
Berry M. V., 1980, European Journal of Physics, V1, P240, DOI 10.1088/0143-0807/1/4/011
[4]   A NEW CLASS OF POINT INTERACTIONS IN ONE DIMENSION [J].
CHERNOFF, PR ;
HUGHES, RJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :97-117
[5]   STATISTICAL MECHANICS WITH TOPOLOGICAL CONSTRAINTS .I. [J].
EDWARDS, SF .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1967, 91 (573P) :513-&
[6]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VII
[7]   EXPLICIT TIME-DEPENDENT SCHRODINGER PROPAGATORS [J].
GAVEAU, B ;
SCHULMAN, LS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (10) :1833-1846
[8]  
Gradshteyn I.S., 1965, TABLES OF INTEGRALS
[9]   EXPLICIT DERIVATION OF THE PROPAGATOR FOR A DIRAC-DELTA POTENTIAL [J].
MANOUKIAN, EB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (01) :67-70
[10]  
Morandi G., 1984, European Journal of Physics, V5, P49, DOI 10.1088/0143-0807/5/1/011