QUANTUM AFFINE SYMMETRY AS GENERALIZED SUPERSYMMETRY

被引:26
作者
LECLAIR, A [1 ]
VAFA, C [1 ]
机构
[1] HARVARD UNIV, LYMAN LAB PHYS, CAMBRIDGE, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(93)90309-D
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The quantum affine U(q)(sl(2)) symmetry is studied when q2 is an even root of unity. The structure of this algebra allows a natural generalization of N = 2 supersymmetry algebra. In particular it is found that the momentum operators P, PBAR, and thus the hamiltonian, can be written as generalized multi-commutators, and can be viewed as new central elements of the algebra U(q)(sl(2)). We show that massive particles in (deformations of) integer spin representations of sl(2) are not allowed in such theories. Generalizations of Witten's index and Bogomolnyi bounds are presented and a preliminary attempt in constructing manifestly U(q)(sl(2)) invariant actions as generalized supersymmetric Landau-Ginzburg theories is made.
引用
收藏
页码:413 / 454
页数:42
相关论文
共 41 条
[1]   FRACTIONAL SUPERSYMMETRIES IN PERTURBED COSET CFTS AND INTEGRABLE SOLITON THEORY [J].
AHN, C ;
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 346 (2-3) :409-439
[2]  
BERNARD D, 1990, INT J M P B, V4, P913, DOI 10.1142/S0217979290000437
[3]   THE FRACTIONAL SUPERSYMMETRIC SINE-GORDON MODELS [J].
BERNARD, D ;
LECLAIR, A .
PHYSICS LETTERS B, 1990, 247 (2-3) :309-316
[4]   THE QUANTUM DOUBLE IN INTEGRABLE QUANTUM-FIELD THEORY [J].
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1993, 399 (2-3) :709-748
[5]   QUANTUM GROUP SYMMETRIES AND NONLOCAL CURRENTS IN 2D QFT [J].
BERNARD, D ;
LECLAIR, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :99-138
[6]   RESIDUAL QUANTUM SYMMETRIES OF THE RESTRICTED SINE-GORDON THEORIES [J].
BERNARD, D ;
LECLAIR, A .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :721-751
[7]   TOPOLOGICAL ANTI-TOPOLOGICAL FUSION [J].
CECOTTI, S ;
VAFA, C .
NUCLEAR PHYSICS B, 1991, 367 (02) :359-461
[8]   SINGULARITY-THEORY AND N = 2 SUPERSYMMETRY [J].
CECOTTI, S ;
GIRARDELLO, L ;
PASQUINUCCI, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (14) :2427-2496
[9]  
CECOTTI S, HUTP92A021 PREPR
[10]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283